These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25618864)

  • 21. Integrating random walk and binary regression to identify novel miRNA-disease association.
    Niu YW; Wang GH; Yan GY; Chen X
    BMC Bioinformatics; 2019 Jan; 20(1):59. PubMed ID: 30691413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs.
    Li X; Lin Y; Gu C; Yang J
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):26. PubMed ID: 30953512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A path-based measurement for human miRNA functional similarities using miRNA-disease associations.
    Ding P; Luo J; Xiao Q; Chen X
    Sci Rep; 2016 Sep; 6():32533. PubMed ID: 27585796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting miRNA-disease associations based on PPMI and attention network.
    Xie X; Wang Y; He K; Sheng N
    BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction.
    Huang D; An J; Zhang L; Liu B
    BMC Bioinformatics; 2022 Jul; 23(1):299. PubMed ID: 35879658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations.
    Peng W; Lan W; Yu Z; Wang J; Pan Y
    IEEE Trans Nanobioscience; 2017 Mar; 16(2):100-107. PubMed ID: 27913356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting miRNA-Disease Associations by Incorporating Projections in Low-Dimensional Space and Local Topological Information.
    Xuan P; Zhang Y; Zhang T; Li L; Zhao L
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources.
    Liu Y; Zeng X; He Z; Zou Q
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):905-915. PubMed ID: 27076459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved Prediction of miRNA-Disease Associations Based on Matrix Completion with Network Regularization.
    Ha J; Park C; Park C; Park S
    Cells; 2020 Apr; 9(4):. PubMed ID: 32260218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases.
    Wang D; Wang J; Lu M; Song F; Cui Q
    Bioinformatics; 2010 Jul; 26(13):1644-50. PubMed ID: 20439255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
    Shi H; Zhang G; Zhou M; Cheng L; Yang H; Wang J; Sun J; Wang Z
    PLoS One; 2016; 11(2):e0148521. PubMed ID: 26849207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of similarity measurements in miRNAs with applications to miRNA-disease association predictions.
    Chen H; Guo R; Li G; Zhang W; Zhang Z
    BMC Bioinformatics; 2020 May; 21(1):176. PubMed ID: 32366225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Inferring Disease-miRNA Associations by Self-Weighting with Multiple Data Source].
    Yang XY; Gao L; Liang С
    Mol Biol (Mosk); 2018; 52(5):864-878. PubMed ID: 30363061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inferring microRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network.
    Yu DL; Ma YL; Yu ZG
    Sci Rep; 2019 Feb; 9(1):2474. PubMed ID: 30792474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RWRMTN: a tool for predicting disease-associated microRNAs based on a microRNA-target gene network.
    Le DH; Tran TTH
    BMC Bioinformatics; 2020 Jun; 21(1):244. PubMed ID: 32539680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes.
    Shi H; Xu J; Zhang G; Xu L; Li C; Wang L; Zhao Z; Jiang W; Guo Z; Li X
    BMC Syst Biol; 2013 Oct; 7():101. PubMed ID: 24103777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
    Chen X; Guan NN; Li JQ; Yan GY
    J Cell Mol Med; 2018 Mar; 22(3):1548-1561. PubMed ID: 29272076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NDAMDA: Network distance analysis for MiRNA-disease association prediction.
    Chen X; Wang LY; Huang L
    J Cell Mol Med; 2018 May; 22(5):2884-2895. PubMed ID: 29532987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.