BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25619304)

  • 1. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.
    Shi X; Holland GP; Yarger JL
    Biomacromolecules; 2015 Mar; 16(3):852-9. PubMed ID: 25619304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.
    Shi X; Yarger JL; Holland GP
    Chem Commun (Camb); 2014 May; 50(37):4856-9. PubMed ID: 24686512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy.
    Holland GP; Creager MS; Jenkins JE; Lewis RV; Yarger JL
    J Am Chem Soc; 2008 Jul; 130(30):9871-7. PubMed ID: 18593157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states.
    Holland GP; Jenkins JE; Creager MS; Lewis RV; Yarger JL
    Biomacromolecules; 2008 Feb; 9(2):651-7. PubMed ID: 18171016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.
    Yang M; Nakazawa Y; Yamauchi K; Knight D; Asakura T
    Biomacromolecules; 2005; 6(6):3220-6. PubMed ID: 16283749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics of aromatic residues in spider silk: 2D carbon correlation NMR of dragline fibers.
    Izdebski T; Akhenblit P; Jenkins JE; Yarger JL; Holland GP
    Biomacromolecules; 2010 Jan; 11(1):168-74. PubMed ID: 19894709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks.
    Dong Q; Fang G; Huang Y; Hu L; Yao J; Shao Z; Ling S; Chen X
    J Mater Chem B; 2020 Jan; 8(1):168-176. PubMed ID: 31789330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of spider silk proteins in the fiber.
    Parkhe AD; Seeley SK; Gardner K; Thompson L; Lewis RV
    J Mol Recognit; 1997; 10(1):1-6. PubMed ID: 9179774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state NMR relaxation studies of Australian spider silks.
    Kishore AI; Herberstein ME; Craig CL; Separovic F
    Biopolymers; 2001-2002; 61(4):287-97. PubMed ID: 12115143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations.
    Holland GP; Mou Q; Yarger JL
    Chem Commun (Camb); 2013 Jul; 49(59):6680-2. PubMed ID: 23774714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state NMR comparison of various spiders' dragline silk fiber.
    Creager MS; Jenkins JE; Thagard-Yeaman LA; Brooks AE; Jones JA; Lewis RV; Holland GP; Yarger JL
    Biomacromolecules; 2010 Aug; 11(8):2039-43. PubMed ID: 20593757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-related increase in inducible mechanical variability of major ampullate silk in a huntsman spider (Araneae: Sparassidae).
    Piorkowski D; Liao CP; Blackledge TA; Tso IM
    Naturwissenschaften; 2021 May; 108(3):22. PubMed ID: 33945014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the fraction of glycine and alanine in beta-sheet and helical conformations in spider dragline silk using solid-state NMR.
    Holland GP; Jenkins JE; Creager MS; Lewis RV; Yarger JL
    Chem Commun (Camb); 2008 Nov; (43):5568-70. PubMed ID: 18997954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational change of
    Asakura T; Matsuda H; Aoki A; Kataoka N; Imai A
    Int J Biol Macromol; 2019 Jun; 131():654-665. PubMed ID: 30902719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid analysis of spider dragline silk using ¹H NMR.
    Shi X; Holland GP; Yarger JL
    Anal Biochem; 2013 Sep; 440(2):150-7. PubMed ID: 23727559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary Structure Adopted by the Gly-Gly-X Repetitive Regions of Dragline Spider Silk.
    Gray GM; van der Vaart A; Guo C; Jones J; Onofrei D; Cherry BR; Lewis RV; Yarger JL; Holland GP
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27918448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
    Bratzel G; Buehler MJ
    J Mech Behav Biomed Mater; 2012 Mar; 7():30-40. PubMed ID: 22340682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercontracted spider dragline silk: a solid-state NMR study of the local structure.
    van Beek JD; Kümmerlen J; Vollrath F; Meier BH
    Int J Biol Macromol; 1999; 24(2-3):173-8. PubMed ID: 10342762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.