These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25619449)

  • 1. StimDuino: an Arduino-based electrophysiological stimulus isolator.
    Sheinin A; Lavi A; Michaelevski I
    J Neurosci Methods; 2015 Mar; 243():8-17. PubMed ID: 25619449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and application of a novel brain slice system that permits independent electrophysiological recordings from multiple slices.
    Stopps M; Allen N; Barrett R; Choudhury HI; Jarolimek W; Johnson M; Kuenzi FM; Maubach KA; Nagano N; Seabrook GR
    J Neurosci Methods; 2004 Jan; 132(2):137-48. PubMed ID: 14706711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior.
    Nguyen KP; O'Neal TJ; Bolonduro OA; White E; Kravitz AV
    J Neurosci Methods; 2016 Jul; 267():108-14. PubMed ID: 27060385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Command-line cellular electrophysiology for conventional and real-time closed-loop experiments.
    Linaro D; Couto J; Giugliano M
    J Neurosci Methods; 2014 Jun; 230():5-19. PubMed ID: 24769169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and testing of low intensity laser biostimulator.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A programmable stimulator for electrophysiological studies.
    Beals WM; Solie TN; Morgan RJ
    Biomed Sci Instrum; 1992; 28():1-8. PubMed ID: 1643211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of bipolar parallel electrodes for well-controlled microstimulation in a mouse hippocampal brain slice.
    Neagu B; Strominger NL; Carpenter DO
    J Neurosci Methods; 2005 Jun; 144(2):153-63. PubMed ID: 15910973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lindane blocks GABAA-mediated inhibition and modulates pyramidal cell excitability in the rat hippocampal slice.
    Joy RM; Walby WF; Stark LG; Albertson TE
    Neurotoxicology; 1995; 16(2):217-28. PubMed ID: 7566682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.
    Steinbach G; Kaňa R
    Microsc Microanal; 2016 Apr; 22(2):258-63. PubMed ID: 27050040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures.
    Thiébaud P; de Rooij NF; Koudelka-Hep M; Stoppini L
    IEEE Trans Biomed Eng; 1997 Nov; 44(11):1159-63. PubMed ID: 9353996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slice XVIvo™: a novel electrophysiology system with the capability for 16 independent brain slice recordings.
    Graef JD; Wei H; Lippiello PM; Bencherif M; Fedorov N
    J Neurosci Methods; 2013 Jan; 212(2):228-33. PubMed ID: 23099344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
    Joshi J; Saharan S; Mandal PK
    J Neurosci Methods; 2014 Feb; 223():123-32. PubMed ID: 24345673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Software control of sensing and stimulation for cardiac electrophysiological study.
    Cochrane T; Nathan AW; Butrous GS; Camm AJ
    Int J Biomed Comput; 1984; 15(3):225-35. PubMed ID: 6547406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile computer-controlled biological stimulus sequencer.
    Boyechko G; Bose D
    J Pharmacol Methods; 1984 Aug; 12(1):45-52. PubMed ID: 6536813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-slice recording system for stable late phase hippocampal long-term potentiation experiments.
    Kroker KS; Rosenbrock H; Rast G
    J Neurosci Methods; 2011 Jan; 194(2):394-401. PubMed ID: 21087635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A technique for repeated recordings in cortical organotypic slices.
    Dong HW; Buonomano DV
    J Neurosci Methods; 2005 Jul; 146(1):69-75. PubMed ID: 15935222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neurodyne: a simple mains-powered constant-current stimulus isolator.
    Millar J; Barnett TG; Trout SJ
    J Neurosci Methods; 1994 Nov; 55(1):53-7. PubMed ID: 7891462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.