BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25619596)

  • 1. The first small-molecule inhibitors of members of the ribonuclease E family.
    Kime L; Vincent HA; Gendoo DM; Jourdan SS; Fishwick CW; Callaghan AJ; McDowall KJ
    Sci Rep; 2015 Jan; 5():8028. PubMed ID: 25619596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli.
    Clarke JE; Kime L; Romero A D; McDowall KJ
    Nucleic Acids Res; 2014 Oct; 42(18):11733-51. PubMed ID: 25237058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regions of RNase E important for 5'-end-dependent RNA cleavage and autoregulated synthesis.
    Jiang X; Diwa A; Belasco JG
    J Bacteriol; 2000 May; 182(9):2468-75. PubMed ID: 10762247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain.
    Sun W; Jun E; Nicholson AW
    Biochemistry; 2001 Dec; 40(49):14976-84. PubMed ID: 11732918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bacterial endoribonuclease RNase E can cleave RNA in the absence of the RNA chaperone Hfq.
    Baek YM; Jang KJ; Lee H; Yoon S; Baek A; Lee K; Kim DE
    J Biol Chem; 2019 Nov; 294(44):16465-16478. PubMed ID: 31540970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein synthesis inhibitors and catalytic RNA. Effect of puromycin on tRNA precursor processing by the RNA component of Escherichia coli RNase P.
    Vioque A
    FEBS Lett; 1989 Mar; 246(1-2):137-9. PubMed ID: 2468523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The recognition of structured elements by a conserved groove distant from domains associated with catalysis is an essential determinant of RNase E.
    Clarke JE; Sabharwal K; Kime L; McDowall KJ
    Nucleic Acids Res; 2023 Jan; 51(1):365-379. PubMed ID: 36594161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural and biochemical comparison of Ribonuclease E homologues from pathogenic bacteria highlights species-specific properties.
    Mardle CE; Shakespeare TJ; Butt LE; Goddard LR; Gowers DM; Atkins HS; Vincent HA; Callaghan AJ
    Sci Rep; 2019 May; 9(1):7952. PubMed ID: 31138855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNase MRP and RNase P share a common substrate.
    Potuschak T; Rossmanith W; Karwan R
    Nucleic Acids Res; 1993 Jul; 21(14):3239-43. PubMed ID: 7688115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli.
    Himabindu P; Anupama K
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain.
    Callaghan AJ; Grossmann JG; Redko YU; Ilag LL; Moncrieffe MC; Symmons MF; Robinson CV; McDowall KJ; Luisi BF
    Biochemistry; 2003 Dec; 42(47):13848-55. PubMed ID: 14636052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E.
    Ow MC; Perwez T; Kushner SR
    Mol Microbiol; 2003 Aug; 49(3):607-22. PubMed ID: 12864847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover.
    Callaghan AJ; Marcaida MJ; Stead JA; McDowall KJ; Scott WG; Luisi BF
    Nature; 2005 Oct; 437(7062):1187-91. PubMed ID: 16237448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic activation of multimeric RNase E and RNase G by 5'-monophosphorylated RNA.
    Jiang X; Belasco JG
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9211-6. PubMed ID: 15197283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic domain of RNase E shows inherent 3' to 5' directionality in cleavage site selection.
    Feng Y; Vickers TA; Cohen SN
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14746-51. PubMed ID: 12417756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression.
    Dasgupta S; Fernandez L; Kameyama L; Inada T; Nakamura Y; Pappas A; Court DL
    Mol Microbiol; 1998 May; 28(3):629-40. PubMed ID: 9632264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Amarasinghe AK; Nicholson AW
    Nucleic Acids Res; 2001 May; 29(9):1915-25. PubMed ID: 11328875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of interferon-inducible recombinant human RNase L causes RNA degradation and inhibition of cell growth in Escherichia coli.
    Pandey M; Rath PC
    Biochem Biophys Res Commun; 2004 Apr; 317(2):586-97. PubMed ID: 15063798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNase E of Escherichia coli is a membrane-binding protein.
    Khemici V; Poljak L; Luisi BF; Carpousis AJ
    Mol Microbiol; 2008 Nov; 70(4):799-813. PubMed ID: 18976283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.