BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25619644)

  • 1. Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing.
    Matamoro-Vidal A; Salazar-Ciudad I; Houle D
    Dev Dyn; 2015 Sep; 244(9):1058-1073. PubMed ID: 25619644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Morphological Variation in the Developing
    Matamoro-Vidal A; Huang Y; Salazar-Ciudad I; Shimmi O; Houle D
    G3 (Bethesda); 2018 Jul; 8(7):2399-2409. PubMed ID: 29844017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterned apoptosis has an instructive role for local growth and tissue shape regulation in a fast-growing epithelium.
    Matamoro-Vidal A; Cumming T; Davidović A; Levillayer F; Levayer R
    Curr Biol; 2024 Jan; 34(2):376-388.e7. PubMed ID: 38215743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila wing modularity revisited through a quantitative genetic approach.
    Muñoz-Muñoz F; Carreira VP; Martínez-Abadías N; Ortiz V; González-José R; Soto IM
    Evolution; 2016 Jul; 70(7):1530-41. PubMed ID: 27272402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interspecific QTL study of Drosophila wing size and shape variation to investigate the genetic basis of morphological differences.
    Matta BP; Bitner-Mathé BC
    Genet Mol Res; 2010 Oct; 9(4):2032-49. PubMed ID: 20957607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating phenotypic variation: prospects from "evo-devo" research on Bicyclus anynana wing patterns.
    Beldade P; Brakefield PM; Long AD
    Evol Dev; 2005; 7(2):101-7. PubMed ID: 15733307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of variation in wing morphology in the cactophilic Drosophila buzzatii and its sibling D. koepferae.
    Carreira VP; Soto IM; Hasson E; Fanara JJ
    J Evol Biol; 2006 Jul; 19(4):1275-82. PubMed ID: 16780528
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Benítez HA; Püschel TA; Suazo MJ
    Biology (Basel); 2022 Apr; 11(4):. PubMed ID: 35453766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the distribution of gap junctions inDrosophila melanogaster wing discs during the third larval and early pupal stages of development.
    Stephen Ryerse J; Ann Nagel B
    Wilehm Roux Arch Dev Biol; 1984 Jul; 193(4):187-196. PubMed ID: 28305213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure.
    Klingenberg CP; Debat V; Roff DA
    Evolution; 2010 Oct; 64(10):2935-51. PubMed ID: 20482613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell dynamics underlying oriented growth of the
    Dye NA; Popović M; Spannl S; Etournay R; Kainmüller D; Ghosh S; Myers EW; Jülicher F; Eaton S
    Development; 2017 Dec; 144(23):4406-4421. PubMed ID: 29038308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genetics and evo-devo of butterfly wing patterns.
    Beldade P; Brakefield PM
    Nat Rev Genet; 2002 Jun; 3(6):442-52. PubMed ID: 12042771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell proliferation patterns in the wing imaginal disc of Drosophila.
    González-Gaitán M; Capdevila MP; García-Bellido A
    Mech Dev; 1994 Jun; 46(3):183-200. PubMed ID: 7918103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal evolution of pre-adult life history traits, geometric size and shape, and developmental stability in Drosophila subobscura.
    Santos M; Brites D; Laayouni H
    J Evol Biol; 2006 Nov; 19(6):2006-21. PubMed ID: 17040398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila.
    Soto IM; Carreira VP; Soto EM; Hasson E
    J Evol Biol; 2008 Mar; 21(2):598-609. PubMed ID: 18081744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body size and cell size in Drosophila: the developmental response to temperature.
    French V; Feast M; Partridge L
    J Insect Physiol; 1998 Nov; 44(11):1081-1089. PubMed ID: 12770407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and development of shape: integrating quantitative approaches.
    Klingenberg CP
    Nat Rev Genet; 2010 Sep; 11(9):623-35. PubMed ID: 20697423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature.
    Debat V; Debelle A; Dworkin I
    Evolution; 2009 Nov; 63(11):2864-76. PubMed ID: 19624729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PATTERNS OF QUANTITATIVE VARIATION IN LEPIDOPTERAN WING MORPHOLOGY: THE CONVERGENT GROUPS HELICONIINAE AND ITHOMIINAE (PAPILIONOIDEA: NYMPHALIDAE).
    Strauss RE
    Evolution; 1990 Feb; 44(1):86-103. PubMed ID: 28568216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental instability of the Drosophila wing as an index of genomic perturbation and altered cell proliferation.
    Trotta V; Garoia F; Guerra D; Pezzoli MC; Grifoni D; Cavicchi S
    Evol Dev; 2005; 7(3):234-43. PubMed ID: 15876196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.