These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25619964)

  • 1. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging.
    Lobatto ME; Calcagno C; Millon A; Senders ML; Fay F; Robson PM; Ramachandran S; Binderup T; Paridaans MP; Sensarn S; Rogalla S; Gordon RE; Cardoso L; Storm G; Metselaar JM; Contag CH; Stroes ES; Fayad ZA; Mulder WJ
    ACS Nano; 2015 Feb; 9(2):1837-47. PubMed ID: 25619964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.
    Calcagno C; Lobatto ME; Dyvorne H; Robson PM; Millon A; Senders ML; Lairez O; Ramachandran S; Coolen BF; Black A; Mulder WJ; Fayad ZA
    NMR Biomed; 2015 Oct; 28(10):1304-14. PubMed ID: 26332103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraperitoneal injection improves the uptake of nanoparticle-labeled high-density lipoprotein to atherosclerotic plaques compared with intravenous injection: a multimodal imaging study in ApoE knockout mice.
    Jung C; Kaul MG; Bruns OT; Dučić T; Freund B; Heine M; Reimer R; Meents A; Salmen SC; Weller H; Nielsen P; Adam G; Heeren J; Ittrich H
    Circ Cardiovasc Imaging; 2014 Mar; 7(2):303-11. PubMed ID: 24357264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodality Imaging of Angiogenesis in a Rabbit Atherosclerotic Model by GEBP11 Peptide Targeted Nanoparticles.
    Su T; Wang YB; Han D; Wang J; Qi S; Gao L; Shao YH; Qiao HY; Chen JW; Liang SH; Nie YZ; Li JY; Cao F
    Theranostics; 2017; 7(19):4791-4804. PubMed ID: 29187904
    [No Abstract]   [Full Text] [Related]  

  • 5. Multimodal Positron Emission Tomography Imaging to Quantify Uptake of
    Lobatto ME; Binderup T; Robson PM; Giesen LFP; Calcagno C; Witjes J; Fay F; Baxter S; Wessel CH; Eldib M; Bini J; Carlin SD; Stroes ESG; Storm G; Kjaer A; Lewis JS; Reiner T; Fayad ZA; Mulder WJM; Pérez-Medina C
    Bioconjug Chem; 2020 Feb; 31(2):360-368. PubMed ID: 31095372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions.
    Almer G; Summers KL; Scheicher B; Kellner J; Stelzer I; Leitinger G; Gries A; Prassl R; Zimmer A; Mangge H
    Int J Nanomedicine; 2014; 9():4211-22. PubMed ID: 25214785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adiponectin-coated nanoparticles for enhanced imaging of atherosclerotic plaques.
    Almer G; Wernig K; Saba-Lepek M; Haj-Yahya S; Rattenberger J; Wagner J; Gradauer K; Frascione D; Pabst G; Leitinger G; Mangge H; Zimmer A; Prassl R
    Int J Nanomedicine; 2011; 6():1279-90. PubMed ID: 21753879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation.
    Zhang J; Yang S; Ji X; Zhou Q; Xing D
    J Am Coll Cardiol; 2014 Jul; 64(4):385-90. PubMed ID: 25060374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histological validation of iron-oxide and gadolinium based MRI contrast agents in experimental atherosclerosis: the do's and don't's.
    den Adel B; Bovens SM; te Boekhorst B; Strijkers GJ; Poelmann RE; van der Weerd L; Pasterkamp G
    Atherosclerosis; 2012 Dec; 225(2):274-80. PubMed ID: 22882907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging.
    Ouimet T; Lancelot E; Hyafil F; Rienzo M; Deux F; Lemaître M; Duquesnoy S; Garot J; Roques BP; Michel JB; Corot C; Ballet S
    Mol Pharm; 2012 Apr; 9(4):850-61. PubMed ID: 22352457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents.
    Zhang H; Zhang L; Myerson J; Bibee K; Scott M; Allen J; Sicard G; Lanza G; Wickline S
    PLoS One; 2011; 6(10):e26385. PubMed ID: 22028868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging.
    El-Dakdouki MH; El-Boubbou K; Kamat M; Huang R; Abela GS; Kiupel M; Zhu DC; Huang X
    Pharm Res; 2014 Jun; 31(6):1426-37. PubMed ID: 23568520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles for multimodal in vivo imaging in nanomedicine.
    Key J; Leary JF
    Int J Nanomedicine; 2014; 9():711-26. PubMed ID: 24511229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall.
    Derlin T; Habermann CR; Lengyel Z; Busch JD; Wisotzki C; Mester J; Pávics L
    J Nucl Med; 2011 Dec; 52(12):1848-54. PubMed ID: 22065877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal molecular imaging of atherosclerosis: Nanoparticles functionalized with scFv fragments of an anti-αIIbβ3 antibody.
    Larivière M; Lorenzato CS; Adumeau L; Bonnet S; Hémadou A; Jacobin-Valat MJ; Noubhani A; Santarelli X; Minder L; Di Primo C; Sanchez S; Mornet S; Laroche-Traineau J; Clofent-Sanchez G
    Nanomedicine; 2019 Nov; 22():102082. PubMed ID: 31404651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Feasibility of using intravascular loopless monopole antenna to image atherosclerotic plaque in a porcine model with 3.0 T magnetic resonance imaging].
    Zhao L; Zhang C; Ma XH; Shang JF; Yuan HY; Zhang J; Zhang ZQ
    Zhonghua Xin Xue Guan Bing Za Zhi; 2013 May; 41(5):411-5. PubMed ID: 24021125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques.
    Iwaki S; Hokamura K; Ogawa M; Takehara Y; Muramatsu Y; Yamane T; Hirabayashi K; Morimoto Y; Hagisawa K; Nakahara K; Mineno T; Terai T; Komatsu T; Ueno T; Tamura K; Adachi Y; Hirata Y; Arita M; Arai H; Umemura K; Nagano T; Hanaoka K
    Org Biomol Chem; 2014 Nov; 12(43):8611-8. PubMed ID: 25186130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis.
    Wei X; Ying M; Dehaini D; Su Y; Kroll AV; Zhou J; Gao W; Fang RH; Chien S; Zhang L
    ACS Nano; 2018 Jan; 12(1):109-116. PubMed ID: 29216423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration.
    van der Valk FM; van Wijk DF; Lobatto ME; Verberne HJ; Storm G; Willems MC; Legemate DA; Nederveen AJ; Calcagno C; Mani V; Ramachandran S; Paridaans MP; Otten MJ; Dallinga-Thie GM; Fayad ZA; Nieuwdorp M; Schulte DM; Metselaar JM; Mulder WJ; Stroes ES
    Nanomedicine; 2015 Jul; 11(5):1039-46. PubMed ID: 25791806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis.
    Zhang S; Xu W; Gao P; Chen W; Zhou Q
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):169-179. PubMed ID: 31852323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.