These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25620)

  • 1. Production of trypsin inhibitor by a Cephalosporium sp.
    Tsuchiya K; Kimura T
    Appl Environ Microbiol; 1978 Apr; 35(4):631-5. PubMed ID: 25620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of Protease Production by Cephalosporium sp.
    Kimura T; Tsuchiya K
    Appl Environ Microbiol; 1982 Mar; 43(3):654-8. PubMed ID: 16345972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium.
    Vicik SM; Fedor AJ; Swartz RW
    Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and optimization studies of cephalosporin C by solid state fermentation.
    Ellaiah P; Premkumar J; Kanthachari PV; Adinarayana K
    Hindustan Antibiot Bull; 2002; 44(1-4):1-7. PubMed ID: 15061587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of culture conditions on cathepsin B inhibitor production by a marine bacterium, Pseudomonas sp. strain PB01.
    Hoang le TV; Kim MM; Kim SK
    J Microbiol Biotechnol; 2008 Jun; 18(6):1115-20. PubMed ID: 18600056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of extracellular trypsin and chymotrypsin inhibitors by a Streptomyces Sp.
    Kourteva Y; Angelova B; Peretz V
    J Basic Microbiol; 1989; 29(7):413-7. PubMed ID: 2600776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid state fermentation for cephalosporin production by Streptomyces clavuligerus and Cephalosporium acremonium.
    Jermini MF; Demain AL
    Experientia; 1989 Dec; 45(11-12):1061-5. PubMed ID: 2599054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression of beta-lactam production in Cephalosporium acremonium by nitrogen sources.
    Shen YQ; Heim J; Solomon NA; Wolfe S; Demain AL
    J Antibiot (Tokyo); 1984 May; 37(5):503-11. PubMed ID: 6539768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cephalosporin synthesis in Cephalosporium acremonium by phosphate and glucose.
    Küenzi M
    Arch Microbiol; 1980 Nov; 128(1):78-83. PubMed ID: 7192969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of growth kinetics for an isolated marine bacterium, Oceanimonas sp. BPMS22 during the production of a trypsin inhibitor.
    Harish BS; Uppuluri KB
    Prep Biochem Biotechnol; 2018; 48(6):556-563. PubMed ID: 29869945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased alkalotolerant and thermostable ribonuclease (RNase) production from alkaliphilic Streptomyces sp. M49-1 by optimizing the growth conditions using response surface methodology.
    Demir T; Gübe Ö; Yücel M; Hameş-Kocabaş EE
    World J Microbiol Biotechnol; 2013 Sep; 29(9):1625-33. PubMed ID: 23532461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of cultivation conditions on the synthesis of trypsin inhibitor in the submerged culture of Actinomyces janthinus 118].
    Chermenskiĭ DN; Shkidchenko AN; Andreeva NA
    Prikl Biokhim Mikrobiol; 1979; 15(4):528-32. PubMed ID: 514987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of medium composition on the cephalosporin C production with a highly productive strain Cephalosporium acremonium.
    Zhou W; Holzhauer-Rieger K; Dors M; Schügerl K
    J Biotechnol; 1992 May; 23(3):315-29. PubMed ID: 1368249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cybernetic modeling of the cephalosporin C fermentation process by Cephalosporium acremonium.
    Kim BM; Kim SW; Yang DR
    Biotechnol Lett; 2003 Apr; 25(8):611-6. PubMed ID: 12882154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of trehalose production by a novel strain Brevibacterium sp. SY361.
    Wang L; Huang R; Gu G; Fang H
    J Basic Microbiol; 2008 Oct; 48(5):410-5. PubMed ID: 18759225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species.
    Celik E; Calik P
    Biotechnol Prog; 2004; 20(2):491-9. PubMed ID: 15058994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation.
    Basak S; Velayudhan A; Ladisch MR
    Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi.
    Cheigh CI; Choi HJ; Park H; Kim SB; Kook MC; Kim TS; Hwang JK; Pyun YR
    J Biotechnol; 2002 May; 95(3):225-35. PubMed ID: 12007863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of medium and process parameters for the production of lipase from an oil-tolerant Aspergillus sp. (RBD-01).
    Aulakh SS; Prakash R
    J Basic Microbiol; 2010 Feb; 50(1):37-42. PubMed ID: 20175121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227.
    Cho S; Lee D; Luong TT; Park S; Oh YK; Lee T
    J Microbiol Biotechnol; 2011 Oct; 21(10):1073-80. PubMed ID: 22031034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.