BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25620370)

  • 21. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress.
    Cheng J; Lu H; Huang Y; Li K; Huang R; Zhou J; Cen K
    Bioresour Technol; 2016 Mar; 203():220-7. PubMed ID: 26724554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 Sep; 144():321-7. PubMed ID: 23891832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-mitigation of CO(2), calcite formation and simultaneous biodiesel precursors production using Chlorella sp.
    Fulke AB; Mudliar SN; Yadav R; Shekh A; Srinivasan N; Ramanan R; Krishnamurthi K; Devi SS; Chakrabarti T
    Bioresour Technol; 2010 Nov; 101(21):8473-6. PubMed ID: 20580227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of biodiesel by autotrophic Chlorella pyrenoidosa in a sintered disc lab scale bubble column photobioreactor under natural sunlight.
    Singh NK; Naira VR; Maiti SK
    Prep Biochem Biotechnol; 2019; 49(3):255-269. PubMed ID: 30794071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production.
    Praveenkumar R; Kim B; Choi E; Lee K; Cho S; Hyun JS; Park JY; Lee YC; Lee HU; Lee JS; Oh YK
    Bioprocess Biosyst Eng; 2014 Oct; 37(10):2083-94. PubMed ID: 24719225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp.
    Fan J; Ning K; Zeng X; Luo Y; Wang D; Hu J; Li J; Xu H; Huang J; Wan M; Wang W; Zhang D; Shen G; Run C; Liao J; Fang L; Huang S; Jing X; Su X; Wang A; Bai L; Hu Z; Xu J; Li Y
    Plant Physiol; 2015 Dec; 169(4):2444-61. PubMed ID: 26486592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats.
    Gumbi ST; Majeke BM; Olaniran AO; Mutanda T
    Appl Biochem Biotechnol; 2017 May; 182(1):382-399. PubMed ID: 27864781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2.
    Han F; Huang J; Li Y; Wang W; Wan M; Shen G; Wang J
    Bioresour Technol; 2013 May; 136():418-24. PubMed ID: 23567711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor.
    Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS
    Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock.
    Tanadul OU; VanderGheynst JS; Beckles DM; Powell AL; Labavitch JM
    Biotechnol Bioeng; 2014 Jul; 111(7):1323-31. PubMed ID: 24474069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.
    Feng P; Deng Z; Hu Z; Fan L
    Bioresour Technol; 2011 Nov; 102(22):10577-84. PubMed ID: 21955881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid production by a CO₂-tolerant green microalga, Chlorella sp. MRA-1.
    Zheng Y; Yuan C; Liu J; Hu G; Li F
    J Microbiol Biotechnol; 2014 May; 24(5):683-9. PubMed ID: 24572279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel.
    Ghosh S; Roy S; Das D
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3322-35. PubMed ID: 25690351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixed microalgae consortia growth under higher concentration of CO
    Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M
    J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa.
    Sukačová K; Búzová D; Červený J
    Folia Microbiol (Praha); 2020 Oct; 65(5):901-908. PubMed ID: 32415567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulating mechanisms of CO
    Li J; Tang X; Pan K; Zhu B; Li Y; Ma X; Zhao Y
    Chemosphere; 2020 May; 247():125814. PubMed ID: 31927186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.
    Li D; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2015 Jun; 185():269-75. PubMed ID: 25776894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.
    da Silva Vaz B; Costa JA; de Morais MG
    Appl Biochem Biotechnol; 2016 Jan; 178(2):418-29. PubMed ID: 26453033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.