These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25620573)

  • 1. A carbon-air battery for high power generation.
    Yang B; Ran R; Zhong Y; Su C; Tadé MO; Shao Z
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3722-5. PubMed ID: 25620573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode.
    Fu XZ; Lin JY; Xu S; Luo JL; Chuang KT; Sanger AR; Krzywicki A
    Phys Chem Chem Phys; 2011 Nov; 13(43):19615-23. PubMed ID: 21984357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.
    Su C; Chen Y; Wang W; Ran R; Shao Z; Diniz da Costa JC; Liu S
    Environ Sci Technol; 2014 Jun; 48(12):7122-7. PubMed ID: 24856957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.
    Shao Z; Haile SM; Ahn J; Ronney PD; Zhan Z; Barnett SA
    Nature; 2005 Jun; 435(7043):795-8. PubMed ID: 15944699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.
    Pomfret MB; Steinhurst DA; Owrutsky JC
    J Phys Chem Lett; 2013 Apr; 4(8):1310-4. PubMed ID: 26282145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.
    Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S
    ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced anodes for high-temperature fuel cells.
    Atkinson A; Barnett S; Gorte RJ; Irvine JT; McEvoy AJ; Mogensen M; Singhal SC; Vohs J
    Nat Mater; 2004 Jan; 3(1):17-27. PubMed ID: 14704781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.
    Su C; Shao Z; Lin Y; Wu Y; Wang H
    Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of anode microstructure on solid oxide fuel cells.
    Suzuki T; Hasan Z; Funahashi Y; Yamaguchi T; Fujishiro Y; Awano M
    Science; 2009 Aug; 325(5942):852-5. PubMed ID: 19679808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Stability and Catalytic Activity on Layered Perovskite Anode for High-Performance Hybrid Direct Carbon Fuel Cells.
    Ma M; Qiao J; Yang X; Xu C; Ren R; Sun W; Sun K; Wang Z
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12938-12948. PubMed ID: 32091875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells.
    Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.
    Xiao G; Wang S; Lin Y; Zhang Y; An K; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19990-6. PubMed ID: 25333295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.