These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 25620812)
1. Electrochemical tuning of the activity and structure of a copper-cobalt micro-nano film on a gold electrode, and its application to the determination of glucose and of Chemical Oxygen Demand. Wang J; Yao N; Li M; Hu J; Chen J; Hao Q; Wu K; Zhou Y Mikrochim Acta; 2015; 182(3):515-522. PubMed ID: 25620812 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film. Wang J; Wu C; Wu K; Cheng Q; Zhou Y Anal Chim Acta; 2012 Jul; 736():55-61. PubMed ID: 22769005 [TBL] [Abstract][Full Text] [Related]
3. A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand. Carchi T; Lapo B; Alvarado J; Espinoza-Montero PJ; Llorca J; Fernández L Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736381 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case. Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092 [TBL] [Abstract][Full Text] [Related]
5. Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand. Elfeky EMS; Shehata MR; Elbashar YH; Barakat MH; El Rouby WMA RSC Adv; 2022 Jan; 12(7):4199-4208. PubMed ID: 35425431 [TBL] [Abstract][Full Text] [Related]
6. Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose. Pak M; Moshaii A; Siampour H; Abbasian S; Nikkhah M Mikrochim Acta; 2020 Apr; 187(5):276. PubMed ID: 32307592 [TBL] [Abstract][Full Text] [Related]
7. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Ngamaroonchote A; Sanguansap Y; Wutikhun T; Karn-Orachai K Mikrochim Acta; 2020 Sep; 187(10):559. PubMed ID: 32915302 [TBL] [Abstract][Full Text] [Related]
8. Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose. Yang Q; Long M; Tan L; Zhang Y; Ouyang J; Liu P; Tang A ACS Appl Mater Interfaces; 2015 Jun; 7(23):12719-30. PubMed ID: 25970570 [TBL] [Abstract][Full Text] [Related]
9. DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Gu T; Hasebe Y Biosens Bioelectron; 2006 May; 21(11):2121-8. PubMed ID: 16297613 [TBL] [Abstract][Full Text] [Related]
10. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Gopalan AI; Muthuchamy N; Komathi S; Lee KP Biosens Bioelectron; 2016 Oct; 84():53-63. PubMed ID: 26584775 [TBL] [Abstract][Full Text] [Related]
11. Nano-Cu Modified Cu and Nano-Cu Modified Graphite Electrodes for Chemical Oxygen Demand Sensors. Diksy Y; Rahmawati I; Jiwanti PK; Ivandini TA Anal Sci; 2020 Nov; 36(11):1323-1327. PubMed ID: 32536621 [TBL] [Abstract][Full Text] [Related]
12. A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement. Huang X; Zhu Y; Yang W; Jiang A; Jin X; Zhang Y; Yan L; Zhang G; Liu Z Molecules; 2019 Aug; 24(17):. PubMed ID: 31466335 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of DNA functionalized carbon nanotubes/Cu(2+) complex by one-step electrodeposition and its sensitive determination of nitrite. Yang S; Xia B; Zeng X; Luo S; Wei W; Liu X Anal Chim Acta; 2010 May; 667(1-2):57-62. PubMed ID: 20441866 [TBL] [Abstract][Full Text] [Related]
14. In Situ Oxidation of Cu Lu C; Li Z; Ren L; Su N; Lu D; Liu Z Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31269709 [TBL] [Abstract][Full Text] [Related]
15. Ion-exchange chromatography combined with direct current amperometric detection at CuNPs/reduced graphene oxide-chitosan composite film modified electrode for determination of monosaccharide composition of polysaccharides from Phellinus igniarius. Xi L; Wang F; Zhu Z; Huang Z; Zhu Y Talanta; 2014 Feb; 119():440-6. PubMed ID: 24401438 [TBL] [Abstract][Full Text] [Related]
16. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit. Geun Jeong B; Min Yoon S; Ho Choi C; Koang Kwon K; Sik Hyun M; Heui Yi D; Soo Park H; Kim M; Joo Kim H J Environ Monit; 2007 Dec; 9(12):1352-7. PubMed ID: 18049774 [TBL] [Abstract][Full Text] [Related]
17. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Chu X; Duan D; Shen G; Yu R Talanta; 2007 Mar; 71(5):2040-7. PubMed ID: 19071561 [TBL] [Abstract][Full Text] [Related]
18. Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Afkhami A; Soltani-Felehgari F; Madrakian T; Ghaedi H Biosens Bioelectron; 2014 Jan; 51():379-85. PubMed ID: 24007673 [TBL] [Abstract][Full Text] [Related]
19. Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Zeng X; Li X; Xing L; Liu X; Luo S; Wei W; Kong B; Li Y Biosens Bioelectron; 2009 May; 24(9):2898-903. PubMed ID: 19321335 [TBL] [Abstract][Full Text] [Related]
20. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Zhou J; Li X; Yang L; Yan S; Wang M; Cheng D; Chen Q; Dong Y; Liu P; Cai W; Zhang C Anal Chim Acta; 2015 Oct; 899():57-65. PubMed ID: 26547493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]