These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 25620882)
1. Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy. Dzido G; Markowski P; Małachowska-Jutsz A; Prusik K; Jarzębski AB J Nanopart Res; 2015; 17(1):27. PubMed ID: 25620882 [TBL] [Abstract][Full Text] [Related]
2. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system. Nishioka M; Miyakawa M; Kataoka H; Koda H; Sato K; Suzuki TM Nanoscale; 2011 Jun; 3(6):2621-6. PubMed ID: 21552644 [TBL] [Abstract][Full Text] [Related]
3. From Silver Plates to Spherical Nanoparticles: Snapshots of Microwave-Assisted Polyol Synthesis. Torras M; Roig A ACS Omega; 2020 Mar; 5(11):5731-5738. PubMed ID: 32226851 [TBL] [Abstract][Full Text] [Related]
4. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors. Horikoshi S; Abe H; Torigoe K; Abe M; Serpone N Nanoscale; 2010 Aug; 2(8):1441-7. PubMed ID: 20820732 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Kim D; Jeong S; Moon J Nanotechnology; 2006 Aug; 17(16):4019-24. PubMed ID: 21727531 [TBL] [Abstract][Full Text] [Related]
6. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles. El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455 [TBL] [Abstract][Full Text] [Related]
7. High-Speed but Not Magic: Microwave-Assisted Synthesis of Ultra-Small Silver Nanoparticles. Saloga PEJ; Kästner C; Thünemann AF Langmuir; 2018 Jan; 34(1):147-153. PubMed ID: 29215896 [TBL] [Abstract][Full Text] [Related]
8. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification. Cheng KM; Hung YW; Chen CC; Liu CC; Young JJ Carbohydr Polym; 2014 Sep; 110():195-202. PubMed ID: 24906746 [TBL] [Abstract][Full Text] [Related]
9. Microwave-Assisted Coating of PMMA beads by silver nanoparticles. Irzh A; Perkas N; Gedanken A Langmuir; 2007 Sep; 23(19):9891-7. PubMed ID: 17705515 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the mechanism of nucleation and growth of silver nanoparticles in a polymer membrane under continuous precursor supply: tuning of multiple to single nucleation pathway. Naik AN; Patra S; Sen D; Goswami A Phys Chem Chem Phys; 2019 Feb; 21(8):4193-4199. PubMed ID: 30734801 [TBL] [Abstract][Full Text] [Related]
11. Quality and high yield synthesis of Ag nanowires by microwave-assisted hydrothermal method. Meléndrez MF; Medina C; Solis-Pomar F; Flores P; Paulraj M; Pérez-Tijerina E Nanoscale Res Lett; 2015; 10():48. PubMed ID: 25852345 [TBL] [Abstract][Full Text] [Related]
12. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Tolaymat TM; El Badawy AM; Genaidy A; Scheckel KG; Luxton TP; Suidan M Sci Total Environ; 2010 Feb; 408(5):999-1006. PubMed ID: 19945151 [TBL] [Abstract][Full Text] [Related]
13. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR). Testino A; Pilger F; Lucchini MA; Quinsaat JE; Stähli C; Bowen P Molecules; 2015 Jun; 20(6):10566-81. PubMed ID: 26060919 [TBL] [Abstract][Full Text] [Related]
14. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation. Navaladian S; Viswanathan B; Varadarajan TK; Viswanath RP Nanotechnology; 2008 Jan; 19(4):045603. PubMed ID: 21817509 [TBL] [Abstract][Full Text] [Related]
15. Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria. Nam S; Park B; Condon BD RSC Adv; 2018 Jun; 8(39):21937-21947. PubMed ID: 35541741 [TBL] [Abstract][Full Text] [Related]
16. Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Peng H; Yang A; Xiong J Carbohydr Polym; 2013 Jan; 91(1):348-55. PubMed ID: 23044142 [TBL] [Abstract][Full Text] [Related]
17. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications. Maurer EI; Sharma M; Schlager JJ; Hussain SM Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of silver/titanium dioxide composite nanoparticles in ethylene glycol with alkaline solution through sonochemical process. Jhuang YY; Cheng WT Ultrason Sonochem; 2016 Jan; 28():327-333. PubMed ID: 26384915 [TBL] [Abstract][Full Text] [Related]
19. Fabrication, characterization, and thermal property evaluation of silver nanofluids. Noroozi M; Radiman S; Zakaria A; Soltaninejad S Nanoscale Res Lett; 2014; 9(1):645. PubMed ID: 25489293 [TBL] [Abstract][Full Text] [Related]
20. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Tang Y; He W; Zhou G; Wang S; Yang X; Tao Z; Zhou J Nanotechnology; 2012 Sep; 23(35):355304. PubMed ID: 22895119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]