These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25620882)

  • 21. A facile completely 'green' size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator.
    Oluwafemi OS; Lucwaba Y; Gura A; Masabeya M; Ncapayi V; Olujimi OO; Songca SP
    Colloids Surf B Biointerfaces; 2013 Feb; 102():718-23. PubMed ID: 23104035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method.
    Chen D; Qiao X; Qiu X; Chen J; Jiang R
    Nanotechnology; 2010 Jan; 21(2):025607. PubMed ID: 19955604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata.
    Joseph S; Mathew B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1371-9. PubMed ID: 25459695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.
    Byeon JH; Kim YW
    Ultrason Sonochem; 2012 Jan; 19(1):209-15. PubMed ID: 21727021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of Bi-Ni Phase Formation in a Microwave-Assisted Polyol Process.
    Smuda M; Damm C; Ruck M; Doert T
    ChemistryOpen; 2020 Nov; 9(11):1085-1094. PubMed ID: 33163325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.
    Meisterjahn B; Wagner S; von der Kammer F; Hennecke D; Hofmann T
    J Chromatogr A; 2016 Apr; 1440():150-159. PubMed ID: 26948764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure Differentiation of Hydrophilic Brass Nanoparticles Using a Polyol Toolbox.
    Antonoglou O; Founta E; Karagkounis V; Pavlidou E; Litsardakis G; Mourdikoudis S; Thanh NTK; Dendrinou-Samara C
    Front Chem; 2019; 7():817. PubMed ID: 31850309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.
    Fan B; Li Y; Han F; Su T; Li J; Zhang R
    J Mater Sci Mater Med; 2018 May; 29(5):69. PubMed ID: 29748718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Step-reduced synthesis of starch-silver nanoparticles.
    Raghavendra GM; Jung J; Kim D; Seo J
    Int J Biol Macromol; 2016 May; 86():126-8. PubMed ID: 26802247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and characterization of silver nanoparticles using Delonix elata leaf broth.
    Sathiya CK; Akilandeswari S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():337-41. PubMed ID: 24681317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor.
    Baber R; Mazzei L; Thanh NTK; Gavriilidis A
    Nanoscale; 2017 Sep; 9(37):14149-14161. PubMed ID: 28905060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microwave-assisted synthesis of gold, silver, platinum and palladium nanostructures and their use in electrocatalytic applications.
    Safavi A; Tohidi M
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7189-98. PubMed ID: 25924389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of Spherical Ultrafine Silver Particles Using Y-Type Microjet Reactor.
    Wan X; Li J; Li N; Zhang J; Gu Y; Chen G; Ju S
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size Selective Green Synthesis of Silver and Gold Nanoparticles: Enhanced Antibacterial Efficacy of Resveratrol Capped Silver Sol.
    Shukla SP; Roy M; Mukherjee P; Das L; Neogy S; Srivastava D; Adhikari S
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2453-63. PubMed ID: 27455655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microwave-assisted ultrafast synthesis of silver nanoparticles for detection of Hg²⁺.
    Ma Y; Pang Y; Liu F; Xu H; Shen X
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():206-11. PubMed ID: 26312737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A facile route to synthesize silver nanoparticles in polyelectrolyte capsules.
    Anandhakumar S; Raichur AM
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):379-83. PubMed ID: 21333503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights into selective heterogeneous nucleation of metal nanoparticles on oxides by microwave-assisted reduction: rapid synthesis of high-activity supported catalysts.
    Anumol EA; Kundu P; Deshpande PA; Madras G; Ravishankar N
    ACS Nano; 2011 Oct; 5(10):8049-61. PubMed ID: 21888416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile Synthesis of Monodispersed Ag NPs in Ethylene Glycol Using Mixed Capping Agents.
    Chen S; Drehmel JR; Penn RL
    ACS Omega; 2020 Mar; 5(11):6069-6073. PubMed ID: 32226889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Silver Particle onto Bamboo Charcoal by Tripropylene Glycol and the Composites Characterization.
    Chiang TH; Yeh HC
    Materials (Basel); 2014 Jan; 7(2):742-750. PubMed ID: 28788485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, characterization, and antibacterial potential of silver nanoparticles synthesized from Coriandrum sativum L.
    Ashraf A; Zafar S; Zahid K; Salahuddin Shah M; Al-Ghanim KA; Al-Misned F; Mahboob S
    J Infect Public Health; 2019; 12(2):275-281. PubMed ID: 30477919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.