These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2562121)

  • 1. Role of proteolysis in lenses: a review.
    David LL; Shearer TR
    Lens Eye Toxic Res; 1989; 6(4):725-47. PubMed ID: 2562121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential inhibition of three peptidase activities of the proteasome in human lens epithelium by heat and oxidation.
    Andersson M; Sjöstrand J; Karlsson JO
    Exp Eye Res; 1999 Jul; 69(1):129-38. PubMed ID: 10375457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lens fibers have a fully functional ubiquitin-proteasome pathway.
    Pereira P; Shang F; Hobbs M; Girão H; Taylor A
    Exp Eye Res; 2003 May; 76(5):623-31. PubMed ID: 12697426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolysis in human lens epithelium determined by a cell-permeable substrate.
    Karlsson JO; Andersson M; Kling-Petersen A; Sjöstrand J
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):261-4. PubMed ID: 9888455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new model for assessing proteolysis in the intact mouse lens in organ culture.
    Petersen A; Zetterberg M; Sjöstrand J; Karlsson JO
    Ophthalmic Res; 2004; 36(1):25-30. PubMed ID: 15007236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteasome activity in human lens nuclei and correlation with age, gender and severity of cataract.
    Zetterberg M; Petersen A; Sjöstrand J; Karlsson J
    Curr Eye Res; 2003 Jul; 27(1):45-53. PubMed ID: 12868008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens.
    Taylor A; Davies KJ
    Free Radic Biol Med; 1987; 3(6):371-7. PubMed ID: 3322949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens.
    Shang F; Gong X; Palmer HJ; Nowell TR; Taylor A
    Exp Eye Res; 1997 Jan; 64(1):21-30. PubMed ID: 9093017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine protease activated by expression of HIV-1 protease in transgenic mice. MIP26 (aquaporin-0) cleavage and cataract formation in vivo and ex vivo.
    Mitton KP; Kamiya T; Tumminia SJ; Russell P
    J Biol Chem; 1996 Dec; 271(50):31803-6. PubMed ID: 8943220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteolytic cleavage of N-Succ-Leu-Leu-Val-Tyr-AMC by the proteasome in lens epithelium from clear and cataractous human lenses.
    Andersson M; Sjøstrand J; Karlsson JO
    Exp Eye Res; 1998 Aug; 67(2):231-6. PubMed ID: 9733589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bovine lens multicatalytic proteinase complex.
    Wagner BJ; Margolis JW; Singh I
    Enzyme Protein; 1993; 47(4-6):202-9. PubMed ID: 7697120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract.
    Liu K; Lyu L; Chin D; Gao J; Sun X; Shang F; Caceres A; Chang ML; Rowan S; Peng J; Mathias R; Kasahara H; Jiang S; Taylor A
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1071-6. PubMed ID: 25583491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extralysosomal degradation of proteins.
    Gacko M
    Rocz Akad Med Bialymst; 1997; 42 Suppl 1():43-7. PubMed ID: 9337522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitin-mediated protein modification and degradation.
    Schwartz AL; Ciechanover A
    Am J Respir Cell Mol Biol; 1992 Nov; 7(5):463-8. PubMed ID: 1329865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens proteasome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin.
    Murakami K; Jahngen JH; Lin SW; Davies KJ; Taylor A
    Free Radic Biol Med; 1990; 8(3):217-22. PubMed ID: 2341052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lp82 calpain during rat lens maturation and cataract formation.
    Shearer TR; Ma H; Shih M; Hata I; Fukiage C; Nakamura Y; Azuma M
    Curr Eye Res; 1998 Nov; 17(11):1037-43. PubMed ID: 9846621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidases play an important role in cataractogenesis: an immunohistochemical study on lenses derived from Shumiya cataract rats.
    Zhan H; Yamamoto Y; Shumiya S; Kunimatsu M; Nishi K; Ohkubo I; Kani K
    Histochem J; 2001; 33(9-10):511-21. PubMed ID: 12005022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lp82 is the dominant form of calpain in young mouse lens.
    Ma H; Hata I; Shih M; Fukiage C; Nakamura Y; Azuma M; Shearer TR
    Exp Eye Res; 1999 Apr; 68(4):447-56. PubMed ID: 10192802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent association of isolated bovine lens multicatalytic proteinase complex (proteasome) with heat-shock protein 90, an endogenous inhibitor.
    Wagner BJ; Margolis JW
    Arch Biochem Biophys; 1995 Nov; 323(2):455-62. PubMed ID: 7487111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a novel calpain inhibitor as a treatment for cataract.
    Lee HY; Morton JD; Robertson LJ; McDermott JD; Bickerstaffe R; Abell AD; Jones MA; Mehrtens JM; Coxon JM
    Clin Exp Ophthalmol; 2008 Dec; 36(9):852-60. PubMed ID: 19278481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.