These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 25621529)

  • 41. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation.
    Yuan W; Yuan J; Xie J; Li CM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6082-92. PubMed ID: 26908094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TiO
    Li CH; Hsu CW; Lu SY
    J Colloid Interface Sci; 2018 Jul; 521():216-225. PubMed ID: 29571103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting.
    Hernández S; Hidalgo D; Sacco A; Chiodoni A; Lamberti A; Cauda V; Tresso E; Saracco G
    Phys Chem Chem Phys; 2015 Mar; 17(12):7775-86. PubMed ID: 25715190
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO
    Wu F; Yu Y; Yang H; German LN; Li Z; Chen J; Yang W; Huang L; Shi W; Wang L; Wang X
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28558165
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SnS
    Lin J; Liu Y; Liu Y; Huang C; Liu W; Mi X; Fan D; Fan F; Lu H; Chen X
    ChemSusChem; 2019 Mar; 12(5):961-967. PubMed ID: 30716210
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide.
    Morais A; Longo C; Araujo JR; Barroso M; Durrant JR; Nogueira AF
    Phys Chem Chem Phys; 2016 Jan; 18(4):2608-16. PubMed ID: 26698605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting.
    Zhang Z; Yang X; Hedhili MN; Ahmed E; Shi L; Wang P
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):691-6. PubMed ID: 24328231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interfacial Engineering at Quantum Dot-Sensitized TiO
    Kim TY; Kim BS; Oh JG; Park SC; Jang J; Hamann TW; Kang YS; Bang JH; Giménez S; Kang YS
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6208-6218. PubMed ID: 33523646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. C@SiNW/TiO2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting.
    Devarapalli RR; Debgupta J; Pillai VK; Shelke MV
    Sci Rep; 2014 May; 4():4897. PubMed ID: 24810865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation.
    Wang Z; Zong X; Gao Y; Han J; Xu Z; Li Z; Ding C; Wang S; Li C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30696-30702. PubMed ID: 28832111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple but Effective Way To Enhance Photoelectrochemical Solar-Water-Splitting Performance of ZnO Nanorod Arrays: Charge-Trapping Zn(OH)
    Baek M; Kim D; Yong K
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2317-2325. PubMed ID: 28045250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell.
    Alibabaei L; Sherman BD; Norris MR; Brennaman MK; Meyer TJ
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5899-902. PubMed ID: 25918426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simple Fabrication of SnO
    Zhang Y; Lin Q; Tong N; Zhang Z; Zhuang H; Zhang X; Ying W; Zhang H; Wang X
    Chemphyschem; 2018 Oct; 19(20):2717-2723. PubMed ID: 30088324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting.
    Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J
    Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO
    Wu T; Chen C; Wei Y; Lu R; Wang L; Jiang X
    Dalton Trans; 2019 Aug; 48(32):12096-12104. PubMed ID: 31321391
    [TBL] [Abstract][Full Text] [Related]  

  • 60. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.
    Gan X; Li X; Gao X; Qiu J; Zhuge F
    Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.