These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2562167)

  • 1. Cataractogenicity and bioactivation of naphthalene derivatives in lens culture and in vivo.
    Lubek BM; Kubow S; Basu PK; Wells PG
    Lens Eye Toxic Res; 1989; 6(1-2):203-9. PubMed ID: 2562167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo murine studies on the biochemical mechanism of naphthalene cataractogenesis.
    Wells PG; Wilson B; Lubek BM
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):466-73. PubMed ID: 2749733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocimum sanctum modulates selenite-induced cataractogenic changes and prevents rat lens opacification.
    Gupta SK; Srivastava S; Trivedi D; Joshi S; Halder N
    Curr Eye Res; 2005 Jul; 30(7):583-91. PubMed ID: 16020293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of acetaminophen- and naphthalene-induced cataract and glutathione loss by CySSME.
    Rathbun WB; Holleschau AM; Cohen JF; Nagasawa HT
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):923-9. PubMed ID: 8603877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEMPOL protects against lens DNA strand breaks and cataract in the x-rayed rabbit.
    Sasaki H; Lin LR; Yokoyama T; Sevilla MD; Reddy VN; Giblin FJ
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):544-52. PubMed ID: 9501865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional enzyme profiles in rabbit lenses with early stages of naphthalene cataract.
    Selzer M; Wegener A; Hockwin O
    Lens Eye Toxic Res; 1991; 8(4):415-30. PubMed ID: 1958637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-desferrioxamine reduces damage to lenses exposed to hyperbaric oxygen and has an ameliorative effect on catalase and Na, K-ATPase activities.
    Schaal S; Beiran I; Bormusov E; Chevion M; Dovrat A
    Exp Eye Res; 2007 Mar; 84(3):455-63. PubMed ID: 17174302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of digitalis-like compounds on rat lenses.
    Lichtstein D; Levy T; Deutsch J; Steinitz M; Zigler JS; Russell P
    Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):407-13. PubMed ID: 9950600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P; Saxena AK; Monnier VM
    Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spin-trap N-tert-alpha-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse.
    Edamatsu R; Mori A; Packer L
    Biochem Biophys Res Commun; 1995 Jun; 211(3):847-9. PubMed ID: 7598714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The possible mechanism of naphthalene cataract in rat and its prevention by an aldose reductase inhibitor (ALO1576).
    Xu GT; Zigler JS; Lou MF
    Exp Eye Res; 1992 Jan; 54(1):63-72. PubMed ID: 1541342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of prostaglandins E2 and F2 alpha in ultraviolet radiation-induced cortical cataracts in vivo.
    Andley UP; Fritz C; Morrison AR; Becker B
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1539-48. PubMed ID: 8675396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar rat pups: An in vitro study using isolated lens.
    Manikandan R; Thiagarajan R; Beulaja S; Chindhu S; Mariammal K; Sudhandiran G; Arumugam M
    Chem Biol Interact; 2009 Oct; 181(2):202-9. PubMed ID: 19481068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a naphthalene cataract model in vitro.
    Xu GT; Zigler JS; Lou MF
    Exp Eye Res; 1992 Jan; 54(1):73-81. PubMed ID: 1541343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of aldose reductase in naphthalene cataract.
    Lee AY; Chung SS
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):193-7. PubMed ID: 9430562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium: a dehydroascorbate-linked mechanism.
    Yokoyama T; Sasaki H; Giblin FJ; Reddy VN
    Exp Eye Res; 1994 Feb; 58(2):207-18. PubMed ID: 8157113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia.
    Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK
    Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term lens organ culture system to determine age-related effects of UV irradiation on the eye lens.
    Azzam N; Dovrat A
    Exp Eye Res; 2004 Dec; 79(6):903-11. PubMed ID: 15642328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates.
    Freyaldenhoven MA; Lloyd RV; Samokyszyn VM
    Chem Res Toxicol; 1996 Jun; 9(4):677-81. PubMed ID: 8831809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species involved in phenazine-methosulfate-induced rat lens opacification. An experimental model of cataract.
    Kise K; Kosaka H; Nakabayashi M; Kishida K; Shiga T; Tano Y
    Ophthalmic Res; 1994; 26(1):41-50. PubMed ID: 8134088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.