These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25621850)

  • 1. A mesoscale study of the degradation of bone structural properties in modeled microgravity conditions.
    Cosmi F; Steimberg N; Mazzoleni G
    J Mech Behav Biomed Mater; 2015 Apr; 44():61-70. PubMed ID: 25621850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of rat bone explants kept in vitro in simulated microgravity conditions.
    Cosmi F; Steimberg N; Dreossi D; Mazzoleni G
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):164-72. PubMed ID: 19627820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats.
    Shirazi-Fard Y; Anthony RA; Kwaczala AT; Judex S; Bloomfield SA; Hogan HA
    Bone; 2013 Oct; 56(2):461-73. PubMed ID: 23871849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo ovine model of bone tissue alterations in simulated microgravity conditions.
    Gadomski BC; McGilvray KC; Easley JT; Palmer RH; Ehrhart EJ; Haussler KK; Browning RC; Santoni BG; Puttlitz CM
    J Biomech Eng; 2014 Feb; 136(2):021020. PubMed ID: 24170133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the mechanical properties of rat bone under simulated microgravity using nanoindentation.
    Sun LW; Fan YB; Li DY; Zhao F; Xie T; Yang X; Gu ZT
    Acta Biomater; 2009 Nov; 5(9):3506-11. PubMed ID: 19450712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Spacelab 3 simulation: basis for a model of growth plate response in microgravity in the rat.
    Montufar-Solis D; Duke PJ; Morey-Holton E
    J Gravit Physiol; 2001 Dec; 8(2):67-76. PubMed ID: 12365452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology.
    Torday JS
    Adv Space Res; 2003; 32(8):1569-76. PubMed ID: 15000128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic exercise as a countermeasure for microgravity-induced bone loss and muscle atrophy in a rat hindlimb suspension model.
    Norman TL; Bradley-Popovich G; Clovis N; Cutlip RG; Bryner RW
    Aviat Space Environ Med; 2000 Jun; 71(6):593-8. PubMed ID: 10870818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spaceflight alters bone mechanics and modeling drifts in growing rats.
    Vajda EG; Wronski TJ; Halloran BP; Bachus KN; Miller SC
    Aviat Space Environ Med; 2001 Aug; 72(8):720-6. PubMed ID: 11506233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone histomorphometric comparison of rat tibial metaphysis after 7-day tail suspension vs. 7-day spaceflight.
    Vico L; Novikov VE; Very JM; Alexandre C
    Aviat Space Environ Med; 1991 Jan; 62(1):26-31. PubMed ID: 1996927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daily 4-h head-up tilt is effective in preventing muscle but not bone atrophy due to simulated microgravity.
    Sun B; Cao XS; Zhang LF; Liu C; Ni HY; Cheng JH; Wu XY
    J Gravit Physiol; 2003 Dec; 10(2):29-38. PubMed ID: 15838980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial weight bearing does not prevent musculoskeletal losses associated with disuse.
    Swift JM; Lima F; Macias BR; Allen MR; Greene ES; Shirazi-Fard Y; Kupke JS; Hogan HA; Bloomfield SA
    Med Sci Sports Exerc; 2013 Nov; 45(11):2052-60. PubMed ID: 23657172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions.
    Jin F; Zhang Y; Xuan K; He D; Deng T; Tang L; Lu W; Duan Y
    Artif Organs; 2010 Feb; 34(2):118-25. PubMed ID: 19817729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of simulated weightlessness and mechanical loading on bone interstitial fluid flow in rats].
    Ma YJ; Yuan YH; Xie LQ; Li YH; Wan YM; Shi ZZ
    Space Med Med Eng (Beijing); 2003 Aug; 16(4):257-9. PubMed ID: 14594031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture.
    Canciani B; Ruggiu A; Giuliani A; Panetta D; Marozzi K; Tripodi M; Salvadori PA; Cilli M; Ohira Y; Cancedda R; Tavella S
    J Mech Behav Biomed Mater; 2015 Nov; 51():1-12. PubMed ID: 26188564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microgravity and bone adaptation at the tissue level.
    Vico L; Alexandre C
    J Bone Miner Res; 1992 Dec; 7 Suppl 2():S445-7. PubMed ID: 1485555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity effect on testicular functions.
    Ricci G; Catizone A; Esposito R; Galdieri M
    J Gravit Physiol; 2004 Jul; 11(2):P61-2. PubMed ID: 16231456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological effects of microgravity on bone cells.
    Arfat Y; Xiao WZ; Iftikhar S; Zhao F; Li DJ; Sun YL; Zhang G; Shang P; Qian AR
    Calcif Tissue Int; 2014 Jun; 94(6):569-79. PubMed ID: 24687524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food restriction and simulated microgravity: effects on bone and serum leptin.
    Baek K; Barlow AA; Allen MR; Bloomfield SA
    J Appl Physiol (1985); 2008 Apr; 104(4):1086-93. PubMed ID: 18276897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.