These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25622132)

  • 1. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.
    Nansai K; Nakajima K; Kagawa S; Kondo Y; Shigetomi Y; Suh S
    Environ Sci Technol; 2015 Feb; 49(4):2022-31. PubMed ID: 25622132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum.
    Nansai K; Nakajima K; Kagawa S; Kondo Y; Suh S; Shigetomi Y; Oshita Y
    Environ Sci Technol; 2014; 48(3):1391-400. PubMed ID: 24387330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Footprint Family extended MRIO model to support Europe's transition to a One Planet Economy.
    Galli A; Weinzettel J; Cranston G; Ercin E
    Sci Total Environ; 2013 Sep; 461-462():813-8. PubMed ID: 23273807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining Critical Metals and Elements from Seawater: Opportunities and Challenges.
    Diallo MS; Kotte MR; Cho M
    Environ Sci Technol; 2015 Aug; 49(16):9390-9. PubMed ID: 25894365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis.
    Liu Q; Sun K; Ouyang X; Sen B; Liu L; Dai T; Liu G
    Environ Sci Technol; 2022 Aug; 56(16):11807-11817. PubMed ID: 35920659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact on global metal flows arising from the use of portable rechargeable batteries.
    Rydh CJ; Svärd B
    Sci Total Environ; 2003 Jan; 302(1-3):167-84. PubMed ID: 12526907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.
    Rademaker JH; Kleijn R; Yang Y
    Environ Sci Technol; 2013 Sep; 47(18):10129-36. PubMed ID: 23909476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking and quantifying the cobalt flows in mainland China during 1994-2016: Insights into use, trade and prospective demand.
    Chen Z; Zhang L; Xu Z
    Sci Total Environ; 2019 Jul; 672():752-762. PubMed ID: 30974365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global platinum group element resources, reserves and mining - A critical assessment.
    Mudd GM; Jowitt SM; Werner TT
    Sci Total Environ; 2018 May; 622-623():614-625. PubMed ID: 29223085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal dynamics and influencing factors of the global material footprint.
    Wang H; Wei Y; Wu Y; Wang X; Wang Y; Wang G; Yue Q
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18213-18224. PubMed ID: 34686962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances.
    Deetman S; Pauliuk S; van Vuuren DP; van der Voet E; Tukker A
    Environ Sci Technol; 2018 Apr; 52(8):4950-4959. PubMed ID: 29533657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable governance of scarce metals: the case of lithium.
    Prior T; Wäger PA; Stamp A; Widmer R; Giurco D
    Sci Total Environ; 2013 Sep; 461-462():785-91. PubMed ID: 23768895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.
    Alonso E; Sherman AM; Wallington TJ; Everson MP; Field FR; Roth R; Kirchain RE
    Environ Sci Technol; 2012 Mar; 46(6):3406-14. PubMed ID: 22304002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global land-use change hidden behind nickel consumption.
    Nakajima K; Nansai K; Matsubae K; Tomita M; Takayanagi W; Nagasaka T
    Sci Total Environ; 2017 May; 586():730-737. PubMed ID: 28238375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling of metals: accounting of greenhouse gases and global warming contributions.
    Damgaard A; Larsen AW; Christensen TH
    Waste Manag Res; 2009 Nov; 27(8):773-80. PubMed ID: 19767324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The social and environmental complexities of extracting energy transition metals.
    Lèbre É; Stringer M; Svobodova K; Owen JR; Kemp D; Côte C; Arratia-Solar A; Valenta RK
    Nat Commun; 2020 Sep; 11(1):4823. PubMed ID: 32973153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust.
    Voorhoeve RJ; Remeika JP; Freeland PE; Matthias BT
    Science; 1972 Jul; 177(4046):353-4. PubMed ID: 4113806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responsibility of consumers for mining capacity: decomposition analysis of scarcity-weighted metal footprints in the case of Japan.
    Yokoi R; Nansai K; Nakajima K; Watari T; Motoshita M
    iScience; 2021 Jan; 24(1):102025. PubMed ID: 33490925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats.
    Cobelo-García A; Filella M; Croot P; Frazzoli C; Du Laing G; Ospina-Alvarez N; Rauch S; Salaun P; Schäfer J; Zimmermann S
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):15188-94. PubMed ID: 26286804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resource efficiency potential of selected technologies, products and strategies.
    Rohn H; Pastewski N; Lettenmeier M; Wiesen K; Bienge K
    Sci Total Environ; 2014 Mar; 473-474():32-5. PubMed ID: 24361778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.