BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 25622310)

  • 1. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.
    Leem JW; Choi M; Yu JS
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2349-58. PubMed ID: 25622310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer.
    Kim DH; Dudem B; Jung JW; Yu JS
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13113-13123. PubMed ID: 29569898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid silicon nanocone-polymer solar cells.
    Jeong S; Garnett EC; Wang S; Yu Z; Fan S; Brongersma ML; McGehee MD; Cui Y
    Nano Lett; 2012 Jun; 12(6):2971-6. PubMed ID: 22545674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visibly transparent polymer solar cells produced by solution processing.
    Chen CC; Dou L; Zhu R; Chung CH; Song TB; Zheng YB; Hawks S; Li G; Weiss PS; Yang Y
    ACS Nano; 2012 Aug; 6(8):7185-90. PubMed ID: 22789123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors.
    Tsao YC; Søndergaard T; Skovsen E; Gurevich L; Pedersen K; Pedersen TG
    Opt Express; 2013 Jan; 21 Suppl 1():A84-95. PubMed ID: 23389279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.
    Leem JW; Kim S; Park C; Kim E; Yu JS
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6706-15. PubMed ID: 25785480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast fabrication of nano-structured anti-reflection layers for enhancement of solar cells performance using plasma sputtering and infrared assisted roller embossing techniques.
    Liu SJ; Liao CT
    Opt Express; 2012 Feb; 20(5):5143-50. PubMed ID: 22418320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-modified scattering properties of silicon nanostructures for solar energy applications.
    Fofang NT; Luk TS; Okandan M; Nielson GN; Brener I
    Opt Express; 2013 Feb; 21(4):4774-82. PubMed ID: 23482011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes.
    Yin Z; Sun S; Salim T; Wu S; Huang X; He Q; Lam YM; Zhang H
    ACS Nano; 2010 Sep; 4(9):5263-8. PubMed ID: 20738121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices.
    de Souza ML; Corio P; Brolo AG
    Phys Chem Chem Phys; 2012 Dec; 14(45):15722-8. PubMed ID: 23090151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography.
    Lu Y; Lal A
    Nano Lett; 2010 Nov; 10(11):4651-6. PubMed ID: 20939564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly flexible, transparent and self-cleanable superhydrophobic films prepared by a facile and scalable nanopyramid formation technique.
    Kong JH; Kim TH; Kim JH; Park JK; Lee DW; Kim SH; Kim JM
    Nanoscale; 2014; 6(3):1453-61. PubMed ID: 24316731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics.
    Chang CH; Yu P; Hsu MH; Tseng PC; Chang WL; Sun WC; Hsu WC; Hsu SH; Chang YC
    Nanotechnology; 2011 Mar; 22(9):095201. PubMed ID: 21258142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elongated nanostructures for radial junction solar cells.
    Kuang Y; Vece MD; Rath JK; Dijk Lv; Schropp RE
    Rep Prog Phys; 2013 Oct; 76(10):106502. PubMed ID: 24088584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High efficiency hybrid silicon nanopillar-polymer solar cells.
    Pudasaini PR; Ruiz-Zepeda F; Sharma M; Elam D; Ponce A; Ayon AA
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9620-7. PubMed ID: 24032746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.
    Suresh Kumar P; Sundaramurthy J; Mangalaraj D; Nataraj D; Rajarathnam D; Srinivasan MP
    J Colloid Interface Sci; 2011 Nov; 363(1):51-8. PubMed ID: 21831394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.