These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25622324)

  • 1. Motility of actin filaments on micro-contact printed myosin patterns.
    Hajne J; Hanson KL; van Zalinge H; Nicolau DV
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):313-22. PubMed ID: 25622324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer surface properties control the function of heavy meromyosin in dynamic nanodevices.
    Hanson KL; Fulga F; Dobroiu S; Solana G; Kaspar O; Tokarova V; Nicolau DV
    Biosens Bioelectron; 2017 Jul; 93():305-314. PubMed ID: 27591903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface hydrophobicity modulates the operation of actomyosin-based dynamic nanodevices.
    Nicolau DV; Solana G; Kekic M; Fulga F; Mahanivong C; Wright J; Ivanova EP; dos Remedios CG
    Langmuir; 2007 Oct; 23(21):10846-54. PubMed ID: 17854206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The excluded volume effect induced by poly(ethylene glycol) modulates the motility of actin filaments interacting with myosin.
    Munakata S; Hatori K
    FEBS J; 2013 Nov; 280(22):5875-83. PubMed ID: 24004408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating an Actomyosin in Vitro Motility Assay: Toward the Rational Design of Actomyosin-Based Microtransporters.
    Ishigure Y; Nitta T
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):641-8. PubMed ID: 26087497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Surface Silanization for Actin-Myosin Based Nanodevices and Biocompatibility of New Polymer Resists.
    Lindberg FW; Norrby M; Rahman MA; Salhotra A; Takatsuki H; Jeppesen S; Linke H; Månsson A
    Langmuir; 2018 Jul; 34(30):8777-8784. PubMed ID: 29969272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Controlled Properties of Myosin Studied by Electric Field Modulation.
    van Zalinge H; Ramsey LC; Aveyard J; Persson M; Mansson A; Nicolau DV
    Langmuir; 2015 Aug; 31(30):8354-61. PubMed ID: 26161584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective spatial localization of actomyosin motor function by chemical surface patterning.
    Sundberg M; Balaz M; Bunk R; Rosengren-Holmberg JP; Montelius L; Nicholls IA; Omling P; Tågerud S; Månsson A
    Langmuir; 2006 Aug; 22(17):7302-12. PubMed ID: 16893230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alignment of actin filament streams driven by myosin motors in crowded environments.
    Iwase T; Sasaki Y; Hatori K
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2717-2725. PubMed ID: 28754385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of widely used methods to remove nonfunctional myosin heads for the in vitro motility assay.
    Rahman MA; Salhotra A; Månsson A
    J Muscle Res Cell Motil; 2018 Dec; 39(5-6):175-187. PubMed ID: 30850933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy meromyosin molecules extending more than 50 nm above adsorbing electronegative surfaces.
    Persson M; Albet-Torres N; Ionov L; Sundberg M; Höök F; Diez S; Månsson A; Balaz M
    Langmuir; 2010 Jun; 26(12):9927-36. PubMed ID: 20337414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin-Induced Gliding Patterns at Varied [MgATP] Unveil a Dynamic Actin Filament.
    Bengtsson E; Persson M; Rahman MA; Kumar S; Takatsuki H; Månsson A
    Biophys J; 2016 Oct; 111(7):1465-1477. PubMed ID: 27705769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective and contractile filament motions in the myosin motility assay.
    Jung W; Fillenwarth LA; Matsuda A; Li J; Inoue Y; Kim T
    Soft Matter; 2020 Feb; 16(6):1548-1559. PubMed ID: 31942899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosensing using antibody-modulated motility of actin filaments on myosin-coated surfaces.
    Kekic M; Hanson KL; Perumal AS; Solana G; Rajendran K; Dash S; Nicolau DV; Dobroiu S; Dos Remedios CG; Nicolau DV
    Biosens Bioelectron; 2024 Feb; 246():115879. PubMed ID: 38056344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications.
    Sundberg M; Rosengren JP; Bunk R; Lindahl J; Nicholls IA; Tågerud S; Omling P; Montelius L; Månsson A
    Anal Biochem; 2003 Dec; 323(1):127-38. PubMed ID: 14622967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode of heavy meromyosin adsorption and motor function correlated with surface hydrophobicity and charge.
    Albet-Torres N; O'Mahony J; Charlton C; Balaz M; Lisboa P; Aastrup T; Månsson A; Nicholls IA
    Langmuir; 2007 Oct; 23(22):11147-56. PubMed ID: 17696458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phalloidin affects the myosin-dependent sliding velocities of actin filaments in a bound-divalent cation dependent manner.
    Tokuraku K; Uyeda TQ
    J Muscle Res Cell Motil; 2001; 22(4):371-8. PubMed ID: 11808777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching of actin-myosin motors by voltage-induced pH bias in vitro.
    Hatori K; Iwase T; Wada R
    Arch Biochem Biophys; 2016 Aug; 603():64-71. PubMed ID: 27210738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay.
    Kopylova GV; Shchepkin DV; Nikitina LV
    Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanowire-imposed geometrical control in studies of actomyosin motor function.
    Lard M; ten Siethoff L; Generosi J; Persson M; Linke H; Månsson A
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):289-97. PubMed ID: 25823040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.