These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25622367)

  • 1. Enzymatic basis for active transport of Na+ in the sweat gland unit.
    Adachi K; Yamasawa S
    J Invest Dermatol; 1966 May; 46(5):510-1. PubMed ID: 25622367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic basis for the active transport of sodium in the eccrine sweat gland. Localization and characterization of Na-K-adenosine triphosphatase.
    Sato K; Dobson RL; Mali JW
    J Invest Dermatol; 1971 Jul; 57(1):10-6. PubMed ID: 4253997
    [No Abstract]   [Full Text] [Related]  

  • 3. Glucose metabolism of the isolated eccrine sweat gland. II. The relation between glucose metabolism and sodium transport.
    Sato K; Dobson RL
    J Clin Invest; 1973 Sep; 52(9):2166-74. PubMed ID: 4269528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural localization of ouabain-sensitive, K-dependent p-nitrophenyl phosphatase activity in monkey eccrine sweat gland.
    Saga K; Sato K
    J Histochem Cytochem; 1988 Aug; 36(8):1023-30. PubMed ID: 2839572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of some ion transport inhibitors on secretion and reabsorption in intact and perfused single human sweat glands.
    Quinton PM
    Pflugers Arch; 1981 Oct; 391(4):309-13. PubMed ID: 6273784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of Na(+)-K(+)-ATPase α/β, Na(+)-K(+)-2Cl-cotransporter 1 and aquaporin-5 in human eccrine sweat glands.
    Zhang M; Zeng S; Zhang L; Li H; Chen L; Zhang X; Li X; Lin C; Shu S; Xie S; He Y; Mao X; Peng L; Shi L; Yang L; Tang S; Fu X
    Acta Histochem; 2014 Oct; 116(8):1374-81. PubMed ID: 25218052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic basis for the active transport of sodium in the duct and secretory portion of the eccrine sweat gland.
    Sato K; Dobson RL
    J Invest Dermatol; 1970 Jul; 55(1):53-6. PubMed ID: 4246544
    [No Abstract]   [Full Text] [Related]  

  • 8. Thrombin inhibits active sodium-potassium transport in porcine lens.
    Okafor MC; Dean WL; Delamere NA
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2033-8. PubMed ID: 10440258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of renal sodium-potassium-adenosine triphosphatase by aldosterone. Effect of high physiologic levels on enzyme activity in isolated rat and rabbit tubules.
    Mujais SK; Chekal MA; Jones WJ; Hayslett JP; Katz AI
    J Clin Invest; 1985 Jul; 76(1):170-6. PubMed ID: 2991336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transductal fluxes of Na, K, and water in the human eccrine sweat gland.
    Mangos J
    Am J Physiol; 1973 May; 224(5):1235-40. PubMed ID: 4700643
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of UTP on Na+, Cl- and K+ transport in primary cultures from human sweat gland coils.
    Hongpaisan J; Roomans GM
    Acta Physiol Scand; 1999 Mar; 165(3):241-50. PubMed ID: 10192172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na,K-ATPase polypeptide upregulation responses in lens epithelium.
    Delamere NA; Manning RE; Liu L; Moseley AE; Dean WL
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):763-8. PubMed ID: 9538883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal Na,K-adenosine triphosphatase transport rate limits transcellular NaCl reabsorption in distal nephrons of volume-expanded dogs.
    Kiil F; Hartmann A; Langberg H; Sejersted OM; Holthe MR
    J Pharmacol Exp Ther; 1986 Jul; 238(1):327-33. PubMed ID: 3014121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species differences in sodium-potassium adenosine triphosphatase activity in the smooth muscle of the guinea-pig and rat vas deferens.
    Fedan JS; Westfall DP; Fleming WW
    J Pharmacol Exp Ther; 1978 Nov; 207(2):356-63. PubMed ID: 213553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of cardiac actions of ouabain and its binding to Na+, K+-adenosine triphosphatase by increased sodium influx in isolated guinea-pig heart.
    Temma K; Akera T
    J Pharmacol Exp Ther; 1982 Nov; 223(2):490-6. PubMed ID: 6290640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen consumption for K+ uptake during post-stimulatory activation of Na+, K(+)-ATPase in perfused rat mandibular gland.
    Murakami M; Miyamoto S; Imai Y
    J Physiol; 1990 Jul; 426():127-43. PubMed ID: 2172514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of Na(+)/K (+)-ATPase parallels the increase in sodium transport and potassium recycling in an in vitro model of proximal tubule cellular ageing.
    Silva E; Gomes P; Soares-da-Silva P
    J Membr Biol; 2006; 212(3):163-75. PubMed ID: 17334838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for active Na,K-transport by Na,K-ATPase from outer renal medulla.
    Jørgensen PL
    Biochem Soc Symp; 1985; 50():59-79. PubMed ID: 2428372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium transport defect of ouabain-resistant renal Na,K-ATPase.
    Anner BM; Imesch E; Moosmayer M
    Biochem Biophys Res Commun; 1989 Nov; 165(1):360-7. PubMed ID: 2556141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between fluid transport and in situ inhibition of Na(+)-K+ adenosine triphosphatase in corneal endothelium.
    Riley MV; Winkler BS; Peters MI; Czajkowski CA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):560-7. PubMed ID: 8113007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.