These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25622687)

  • 21. Multimode interference devices for focusing in microfluidic channels.
    Hunt HC; Wilkinson JS
    Opt Lett; 2011 Aug; 36(16):3067-9. PubMed ID: 21847162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R
    Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optofluidic integrated cell sorter fabricated by femtosecond lasers.
    Bragheri F; Minzioni P; Martinez Vazquez R; Bellini N; Paiè P; Mondello C; Ramponi R; Cristiani I; Osellame R
    Lab Chip; 2012 Oct; 12(19):3779-84. PubMed ID: 22868483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides.
    Suter JD; Lee W; Howard DJ; Hoppmann E; White IM; Fan X
    Opt Lett; 2010 Sep; 35(17):2997-9. PubMed ID: 20808395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manufacture of Three-Dimensional Optofluidic Spot-Size Converters in Fused Silica Using Hybrid Laser Microfabrication.
    Yu J; Xu J; Zhang A; Song Y; Qi J; Dong Q; Chen J; Liu Z; Chen W; Cheng Y
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser.
    Bragheri F; Ferrara L; Bellini N; Vishnubhatla KC; Minzioni P; Ramponi R; Osellame R; Cristiani I
    J Biophotonics; 2010 Apr; 3(4):234-43. PubMed ID: 20301123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
    Liao Y; Song J; Li E; Luo Y; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K
    Lab Chip; 2012 Feb; 12(4):746-9. PubMed ID: 22231027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optofluidic variable-focus lenses for light manipulation.
    Seow YC; Lim SP; Lee HP
    Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry.
    Holzner G; Du Y; Cao X; Choo J; J deMello A; Stavrakis S
    Lab Chip; 2018 Dec; 18(23):3631-3637. PubMed ID: 30357206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications.
    Harazim SM; Bolaños Quiñones VA; Kiravittaya S; Sanchez S; Schmidt OG
    Lab Chip; 2012 Aug; 12(15):2649-55. PubMed ID: 22739437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.
    Mao X; Lin SC; Lapsley MI; Shi J; Juluri BK; Huang TJ
    Lab Chip; 2009 Jul; 9(14):2050-8. PubMed ID: 19568674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching.
    Yuan L; Huang J; Lan X; Wang H; Jiang L; Xiao H
    Opt Lett; 2014 Apr; 39(8):2358-61. PubMed ID: 24978992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Femtosecond Laser Fabrication of Submillimeter Microlens Arrays with Tunable Numerical Apertures.
    Yang T; Li M; Yang Q; Lu Y; Cheng Y; Zhang C; Du B; Hou X; Chen F
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optically addressable single-use microfluidic valves by laser printer lithography.
    Garcia-Cordero JL; Kurzbuch D; Benito-Lopez F; Diamond D; Lee LP; Ricco AJ
    Lab Chip; 2010 Oct; 10(20):2680-7. PubMed ID: 20740236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinoform microlenses for focusing into microfluidic channels.
    Hunt HC; Wilkinson JS
    Opt Express; 2012 Apr; 20(9):9442-57. PubMed ID: 22535034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in-plane optofluidic microchip for focal point control.
    Chao KS; Lin MS; Yang RJ
    Lab Chip; 2013 Oct; 13(19):3886-92. PubMed ID: 23918038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture.
    Rodriguez-Trujillo R; Castillo-Fernandez O; Garrido M; Arundell M; Valencia A; Gomila G
    Biosens Bioelectron; 2008 Oct; 24(2):290-6. PubMed ID: 18511254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication.
    Xu B; Du WQ; Li JW; Hu YL; Yang L; Zhang CC; Li GQ; Lao ZX; Ni JC; Chu JR; Wu D; Liu SL; Sugioka K
    Sci Rep; 2016 Jan; 6():19989. PubMed ID: 26818119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.