These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25622687)

  • 41. Optically induced flow cytometry for continuous microparticle counting and sorting.
    Lin YH; Lee GB
    Biosens Bioelectron; 2008 Dec; 24(4):572-8. PubMed ID: 18635347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tunable and Dynamic Optofluidic Microlens Arrays Based on Droplets.
    Liang L; Hu X; Shi Y; Zhao S; Hu Q; Liang M; Ai Y
    Anal Chem; 2022 Nov; 94(43):14938-14946. PubMed ID: 36263633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor.
    Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y
    Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optically driven Archimedes micro-screws for micropump application.
    Lin CL; Vitrant G; Bouriau M; Casalegno R; Baldeck PL
    Opt Express; 2011 Apr; 19(9):8267-76. PubMed ID: 21643076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.
    Vannahme C; Klinkhammer S; Lemmer U; Mappes T
    Opt Express; 2011 Apr; 19(9):8179-86. PubMed ID: 21643068
    [TBL] [Abstract][Full Text] [Related]  

  • 46.
    Zhong Y; Yu H; Zhou P; Wen Y; Zhao W; Zou W; Luo H; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39550-39560. PubMed ID: 34378373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scattering detection using a photonic-microfluidic integrated device with on-chip collection capabilities.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2014 Feb; 35(2-3):271-81. PubMed ID: 23893703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization.
    Žukauskas A; Malinauskas M; Reinhardt C; Chichkov BN; Gadonas R
    Appl Opt; 2012 Jul; 51(21):4995-5003. PubMed ID: 22858937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flow metering characterization within an electrical cell counting microfluidic device.
    Hassan U; Watkins NN; Edwards C; Bashir R
    Lab Chip; 2014 Apr; 14(8):1469-76. PubMed ID: 24615248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels.
    Zhang C; Hu Y; Du W; Wu P; Rao S; Cai Z; Lao Z; Xu B; Ni J; Li J; Zhao G; Wu D; Chu J; Sugioka K
    Sci Rep; 2016 Sep; 6():33281. PubMed ID: 27619690
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of self-aligning convergent waveguides of microlens arrays to collect and guide light.
    Wang W; Yang W; Mei X; Li J; Sun X
    Opt Express; 2021 Feb; 29(3):3327-3341. PubMed ID: 33770933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass.
    Chen F; Deng Z; Yang Q; Bian H; Du G; Si J; Hou X
    Opt Lett; 2014 Feb; 39(3):606-9. PubMed ID: 24487877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass.
    He F; Liao Y; Lin J; Song J; Qiao L; Cheng Y; Sugioka K
    Sensors (Basel); 2014 Oct; 14(10):19402-40. PubMed ID: 25330047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A photonic-microfluidic integrated device for reliable fluorescence detection and counting.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2012 Nov; 33(21):3236-44. PubMed ID: 23065957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.
    Cuennet JG; Vasdekis AE; Psaltis D
    Lab Chip; 2013 Jul; 13(14):2721-6. PubMed ID: 23752198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices.
    Wu D; Chen QD; Niu LG; Wang JN; Wang J; Wang R; Xia H; Sun HB
    Lab Chip; 2009 Aug; 9(16):2391-4. PubMed ID: 19636471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.