BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 25624102)

  • 1. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase.
    Ogata H; Nishikawa K; Lubitz W
    Nature; 2015 Apr; 520(7548):571-4. PubMed ID: 25624102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen.
    Ogata H; Mizoguchi Y; Mizuno N; Miki K; Adachi S; Yasuoka N; Yagi T; Yamauchi O; Hirota S; Higuchi Y
    J Am Chem Soc; 2002 Oct; 124(39):11628-35. PubMed ID: 12296727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis.
    Higuchi Y; Yagi T; Yasuoka N
    Structure; 1997 Dec; 5(12):1671-80. PubMed ID: 9438867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution.
    Higuchi Y; Ogata H; Miki K; Yasuoka N; Yagi T
    Structure; 1999 May; 7(5):549-56. PubMed ID: 10378274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN
    Perotto CU; Sodipo CL; Jones GJ; Tidey JP; Blake AJ; Lewis W; Davies ES; McMaster J; Schröder M
    Inorg Chem; 2018 Mar; 57(5):2558-2569. PubMed ID: 29465237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenases in the "active" state: determination of g-matrix axes and electron spin distribution at the active site by 1H ENDOR spectroscopy.
    Müller A; Tscherny I; Kappl R; Hatchikian C; Hüttermann J; Cammack R
    J Biol Inorg Chem; 2002 Jan; 7(1-2):177-94. PubMed ID: 11862554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An orientation-selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase.
    Foerster S; van Gastel M; Brecht M; Lubitz W
    J Biol Inorg Chem; 2005 Jan; 10(1):51-62. PubMed ID: 15611882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state).
    Ogata H; Kellers P; Lubitz W
    J Mol Biol; 2010 Sep; 402(2):428-44. PubMed ID: 20673834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state.
    Ogata H; Hirota S; Nakahara A; Komori H; Shibata N; Kato T; Kano K; Higuchi Y
    Structure; 2005 Nov; 13(11):1635-42. PubMed ID: 16271886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton Transfer Mechanisms in Bimetallic Hydrogenases.
    Tai H; Hirota S; Stripp ST
    Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction.
    Liu T; Wang X; Hoffmann C; DuBois DL; Bullock RM
    Angew Chem Int Ed Engl; 2014 May; 53(21):5300-4. PubMed ID: 24757087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states.
    Volbeda A; Martin L; Liebgott PP; De Lacey AL; Fontecilla-Camps JC
    Metallomics; 2015 Apr; 7(4):710-8. PubMed ID: 25780984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy.
    Brecht M; van Gastel M; Buhrke T; Friedrich B; Lubitz W
    J Am Chem Soc; 2003 Oct; 125(43):13075-83. PubMed ID: 14570480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni-elimination from the active site of the standard [NiFe]‑hydrogenase upon oxidation by O
    Nishikawa K; Mochida S; Hiromoto T; Shibata N; Higuchi Y
    J Inorg Biochem; 2017 Dec; 177():435-437. PubMed ID: 28967475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase.
    Li Z; Ohki Y; Tatsumi K
    J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical aspects of [NiFe]hydrogenase ligand composition.
    Ichikawa K; Matsumoto T; Ogo S
    Dalton Trans; 2009 Jun; (22):4304-9. PubMed ID: 19662307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments.
    Tai H; Hirota S
    Chembiochem; 2020 Jun; 21(11):1573-1581. PubMed ID: 32180334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR study on the light sensitivity of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: Ni-C to Ni-L photoconversion, kinetics of proton rebinding and H/D isotope effect.
    Kellers P; Pandelia ME; Currell LJ; Görner H; Lubitz W
    Phys Chem Chem Phys; 2009 Oct; 11(39):8680-3. PubMed ID: 20449009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F.
    Foerster S; Stein M; Brecht M; Ogata H; Higuchi Y; Lubitz W
    J Am Chem Soc; 2003 Jan; 125(1):83-93. PubMed ID: 12515509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.
    Dong G; Ryde U
    J Biol Inorg Chem; 2016 Jun; 21(3):383-94. PubMed ID: 26940957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.