These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25624113)

  • 1. Investigation of material modeling in fluid-structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms.
    Simsek FG; Kwon YW
    J Biol Phys; 2015 Mar; 41(2):173-201. PubMed ID: 25624113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-system, single-analysis, fluid-structure interaction technique for modelling abdominal aortic aneurysms.
    Kelly SC; O'Rourke MJ
    Proc Inst Mech Eng H; 2010; 224(8):955-69. PubMed ID: 20923114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional modeling of Marfan syndrome with elastic and hyperelastic materials assumptions using fluid-structure interaction.
    Rahmani S; Jarrahi A; Saed B; Navidbakhsh M; Farjpour H; Alizadeh M
    Biomed Mater Eng; 2019; 30(3):255-266. PubMed ID: 30988235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.
    Tierney ÁP; Callanan A; McGloughlin TM
    J Endovasc Ther; 2012 Feb; 19(1):100-14. PubMed ID: 22313210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models.
    Leung JH; Wright AR; Cheshire N; Crane J; Thom SA; Hughes AD; Xu Y
    Biomed Eng Online; 2006 May; 5():33. PubMed ID: 16712729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model.
    Li Z; Kleinstreuer C
    J Biomech; 2006; 39(12):2264-73. PubMed ID: 16153654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method.
    Xenos M; Labropoulos N; Rambhia S; Alemu Y; Einav S; Tassiopoulos A; Sakalihasan N; Bluestein D
    Ann Biomed Eng; 2015 Jan; 43(1):139-53. PubMed ID: 25527320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture.
    Kontopodis N; Metaxa E; Papaharilaou Y; Tavlas E; Tsetis D; Ioannou C
    Vascular; 2015 Feb; 23(1):65-77. PubMed ID: 24757027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of the effects of blood rheology and wall elasticity in abdominal aortic aneurysm under pulsatile flow conditions.
    Bilgi C; Atalık K
    Biorheology; 2019; 56(1):51-71. PubMed ID: 31045509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-structure interaction in axially symmetric models of abdominal aortic aneurysms.
    Fraser KH; Li MX; Lee WT; Easson WJ; Hoskins PR
    Proc Inst Mech Eng H; 2009 Feb; 223(2):195-209. PubMed ID: 19278197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of the flow field within patient-specific models of an abdominal aortic aneurysm under steady inflow conditions.
    O'Rourke MJ; McCullough JP
    Proc Inst Mech Eng H; 2010; 224(8):971-88. PubMed ID: 20923115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical behavior of abdominal aorta aneurysm in rat model treated by cell therapy using mesenchymal stem cells.
    Zidi M; Allaire E
    Biomech Model Mechanobiol; 2015 Jan; 14(1):185-94. PubMed ID: 24781283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid/structure interaction applied to the simulation of Abdominal Aortic Aneurysms.
    Pélerin JL; Kulik C; Goksu C; Coatrieux JL; Rochette M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1754-7. PubMed ID: 17945665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model.
    Li Z; Kleinstreuer C
    J Biomech; 2006; 39(14):2573-82. PubMed ID: 16221475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall stress in media layer of stented three-layered aortic aneurysm at different intraluminal thrombus locations with pulsatile heart cycle.
    Rahmani S; Alagheband M; Karimi A; Alizadeh M; Navidbakhsh M
    J Med Eng Technol; 2015 May; 39(4):239-45. PubMed ID: 25906361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thick-walled fluid-solid-growth model of abdominal aortic aneurysm evolution: application to a patient-specific geometry.
    Grytsan A; Watton PN; Holzapfel GA
    J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25473877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D FSI determination of mechanical stresses on aneurismal walls.
    Veshkina N; Zbicinski I; Stefańczyk L
    Biomed Mater Eng; 2014; 24(6):2519-26. PubMed ID: 25226953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling.
    Niestrawska JA; Viertler C; Regitnig P; Cohnert TU; Sommer G; Holzapfel GA
    J R Soc Interface; 2016 Nov; 13(124):. PubMed ID: 27903785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.