These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 25624163)
1. Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana. Chowanski S; Lubawy J; Spochacz M; Ewelina P; Grzegorz S; Rosinski G; Slocinska M Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():57-63. PubMed ID: 25624163 [TBL] [Abstract][Full Text] [Related]
2. The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana. Chowański S; Lubawy J; Paluch-Lubawa E; Spochacz M; Rosiński G; Słocińska M PLoS One; 2017; 12(3):e0173100. PubMed ID: 28253309 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Lubawy J; Słocińska M Sci Rep; 2020 Jul; 10(1):12076. PubMed ID: 32694601 [TBL] [Abstract][Full Text] [Related]
4. New metabolic activity of the nonsulfated sulfakinin Zopat-SK-1 in the insect fat body. Slocinska M; Marciniak P; Jarmuszkiewicz W; Rosinski G Peptides; 2015 Jun; 68():157-63. PubMed ID: 24879928 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes. Lubawy J; Chowański SP; Colinet H; Słocińska M J Exp Biol; 2023 Sep; 226(17):. PubMed ID: 37589559 [TBL] [Abstract][Full Text] [Related]
6. Thermal stress causes DNA damage and mortality in a tropical insect. Lubawy J; Daburon V; Chowański S; Słocińska M; Colinet H J Exp Biol; 2019 Nov; 222(Pt 23):. PubMed ID: 31672731 [TBL] [Abstract][Full Text] [Related]
7. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study. Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488 [TBL] [Abstract][Full Text] [Related]
8. PROTEOMICS ANALYSIS OF OVEREXPRESSED PLASMA PROTEINS IN RESPONSE TO COLD ACCLIMATION IN Ostrinia furnacalis. Shang Q; Pan Y; Peng T; Yang S; Lu X; Wang Z; Xi J Arch Insect Biochem Physiol; 2015 Dec; 90(4):195-208. PubMed ID: 26440752 [TBL] [Abstract][Full Text] [Related]
9. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion. Sawczyn T; Dolezych B; Klosok M; Augustyniak M; Stygar D; Buldak RJ; Kukla M; Michalczyk K; Karcz-Socha I; Zwirska-Korczala K J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1644-51. PubMed ID: 22702824 [TBL] [Abstract][Full Text] [Related]
10. Effects of stress on the hemolymph juvenile hormone binding protein titers of Manduca sexta. Tauchman SJ; Lorch JM; Orth AP; Goodman WG Insect Biochem Mol Biol; 2007 Aug; 37(8):847-54. PubMed ID: 17628283 [TBL] [Abstract][Full Text] [Related]
11. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of 70 kDa heat shock protein expression. Tollarová-Borovanská M; Lalouette L; Kostál V Cryo Letters; 2009; 30(5):312-9. PubMed ID: 19946654 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana. Slocinska M; Antos-Krzeminska N; Rosinski G; Jarmuszkiewicz W J Bioenerg Biomembr; 2011 Dec; 43(6):717-27. PubMed ID: 21997226 [TBL] [Abstract][Full Text] [Related]
13. The role of hemolymph proteins in the cold tolerance of insects. Duman J; Horwath K Annu Rev Physiol; 1983; 45():261-70. PubMed ID: 6342517 [No Abstract] [Full Text] [Related]
14. Expression of Heat Shock Protein Genes in Different Developmental Stages and After Temperature Stress in the Maize Weevil (Coleoptera: Curculionidae). Tungjitwitayakul J; Tatun N; Vajarasathira B; Sakurai S J Econ Entomol; 2015 Jun; 108(3):1313-23. PubMed ID: 26470260 [TBL] [Abstract][Full Text] [Related]
15. Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect. Teets NM; Kawarasaki Y; Potts LJ; Philip BN; Gantz JD; Denlinger DL; Lee RE J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31345935 [TBL] [Abstract][Full Text] [Related]
16. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: Metabolic regulation and thermal compensation. Zhu W; Zhang H; Li X; Meng Q; Shu R; Wang M; Zhou G; Wang H; Miao L; Zhang J; Qin Q J Insect Physiol; 2016 Feb; 85():76-85. PubMed ID: 26585102 [TBL] [Abstract][Full Text] [Related]
17. Geographic differences on accumulation of sugars and polyols in locust eggs in response to cold acclimation. Wang XH; Qi XL; Kang L J Insect Physiol; 2010 Aug; 56(8):966-70. PubMed ID: 20416314 [TBL] [Abstract][Full Text] [Related]
18. UCP4 expression changes in larval and pupal fat bodies of the beetle Zophobas atratus under adipokinetic hormone treatment. Slocinska M; Antos-Krzeminska N; Golebiowski M; Kuczer M; Stepnowski P; Rosinski G; Jarmuszkiewicz W Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):52-9. PubMed ID: 23688504 [TBL] [Abstract][Full Text] [Related]
19. Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. Lalouette L; Kostál V; Colinet H; Gagneul D; Renault D FEBS J; 2007 Apr; 274(7):1759-67. PubMed ID: 17331186 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and mobilization of glycogen and trehalose in adult male Rhodnius prolixus. Mariano AC; Santos R; Gonzalez MS; Feder D; Machado EA; Pascarelli B; Gondim KC; Meyer-Fernandes JR Arch Insect Biochem Physiol; 2009 Sep; 72(1):1-15. PubMed ID: 19514081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]