These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25624224)

  • 21. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemometric assisted ultrasound leaching-solid phase extraction followed by dispersive-solidification liquid-liquid microextraction for determination of organophosphorus pesticides in soil samples.
    Ahmadi K; Abdollahzadeh Y; Asadollahzadeh M; Hemmati A; Tavakoli H; Torkaman R
    Talanta; 2015 May; 137():167-73. PubMed ID: 25770621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyphenated dispersive solid- and liquid-phase microextraction technique based on a hydrophobic deep eutectic solvent: application for trace analysis of pesticides in fruit juices.
    Sereshti H; Jamshidi F; Nouri N; Nodeh HR
    J Sci Food Agric; 2020 Apr; 100(6):2534-2543. PubMed ID: 31975389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of ionic-liquid-magnetized stirring bar liquid-phase microextraction coupled with HPLC for the determination of naphthoquinones in Zicao.
    Guan L; Luo Q; Shi J; Yu W
    J Sep Sci; 2018 Feb; 41(4):868-876. PubMed ID: 29193775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dispersive microextraction based on "magnetic water" coupled to gas chromatography/mass spectrometry for the fast determination of organophosphorus pesticides in cold-pressed vegetable oils.
    Zhao Q; Lu Q; Yu QW; Feng YQ
    J Agric Food Chem; 2013 Jun; 61(22):5397-403. PubMed ID: 23687955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction for the determination of carbamates in juices by micellar electrokinetic chromatography tandem mass spectrometry.
    Moreno-González D; Huertas-Pérez JF; García-Campaña AM; Gámiz-Gracia L
    Talanta; 2015 Jul; 139():174-80. PubMed ID: 25882424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic microwave-assisted extraction combined with continuous-flow microextraction for determination of pesticides in vegetables.
    Wu L; Hu M; Li Z; Song Y; Yu C; Zhang H; Yu A; Ma Q; Wang Z
    Food Chem; 2016 Feb; 192():596-602. PubMed ID: 26304388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a new dispersive liquid-liquid microextraction method in a narrow-bore tube for preconcentration of triazole pesticides from aqueous samples.
    Farajzadeh MA; Djozan D; Khorram P
    Anal Chim Acta; 2012 Feb; 713():70-8. PubMed ID: 22200310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of pesticide residues in nutraceutical drops.
    Szarka A; Turková D; Hrouzková S
    J Chromatogr A; 2018 Oct; 1570():126-134. PubMed ID: 30119974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid-liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples.
    Nemati M; Farajzadeh MA; Mohebbi A; Khodadadeian F; Afshar Mogaddam MR
    J Sep Sci; 2020 Mar; 43(6):1119-1127. PubMed ID: 31876075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples.
    Bandforuzi SR; Hadjmohammadi MR
    J Chromatogr A; 2018 Aug; 1561():39-47. PubMed ID: 29801940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dispersive microextraction based on magnetic polypyrrole nanowires for the fast determination of pesticide residues in beverage and environmental water samples.
    Zhao Q; Lu Q; Feng YQ
    Anal Bioanal Chem; 2013 May; 405(14):4765-76. PubMed ID: 23515608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous derivatization and ultrasound-assisted dispersive liquid-liquid microextraction of chloropropanols in soy milk and other aqueous matrices combined with gas-chromatography-mass spectrometry.
    Carro AM; González P; Lorenzo RA
    J Chromatogr A; 2013 Dec; 1319():35-45. PubMed ID: 24188994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of fungicides in fruit juice by ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic solvent droplets followed by high performance liquid chromatography.
    Fan RZ; Liu C; Jiang W; Wang X; Liu F
    J AOAC Int; 2014; 97(1):183-7. PubMed ID: 24672876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extraction and determination of organophosphorus pesticides in water samples by a new liquid phase microextraction-gas chromatography-flame photometric detection.
    Khalili-Zanjani MR; Yamini Y; Yazdanfar N; Shariati S
    Anal Chim Acta; 2008 Jan; 606(2):202-8. PubMed ID: 18082651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-residue method for the determination of 450 pesticide residues in honey, fruit juice and wine by double-cartridge solid-phase extraction/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry.
    Pang GF; Fan CL; Liu YM; Cao YZ; Zhang JJ; Fu BL; Li XM; Li ZY; Wu YP
    Food Addit Contam; 2006 Aug; 23(8):777-810. PubMed ID: 16807205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic dispersive solid-phase extraction of some pesticides from fruit juices using monodisperse nanosorbent combined with dispersive liquid-liquid micro-extraction.
    Farajzadeh MA; Shaghaghipour S; Abbaspour M; Afshar Mogaddam MR
    Anal Sci; 2023 Mar; 39(3):303-312. PubMed ID: 36539608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of lignans in Wuweizi by using magnetic bar microextraction and HPLC.
    Shi J; Xu X; Li X; Liu C; Shao M; Zhang H; Wang Z; Zhang H; Huan Y
    J Sep Sci; 2013 Nov; 36(21-22):3527-33. PubMed ID: 24106035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection.
    González-Curbelo MÁ; Hernández-Borges J; Borges-Miquel TM; Rodríguez-Delgado MÁ
    J Chromatogr A; 2013 Oct; 1313():166-74. PubMed ID: 23809845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.