These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 25624413)
1. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels. Badiei N; Sowedan AM; Curtis DJ; Brown MR; Lawrence MJ; Campbell AI; Sabra A; Evans PA; Weisel JW; Chernysh IN; Nagaswami C; Williams PR; Hawkins K Clin Hemorheol Microcirc; 2015; 60(4):451-64. PubMed ID: 25624413 [TBL] [Abstract][Full Text] [Related]
2. In vitro clot model to evaluate fibrin-thrombin effects on fractal dimension of incipient blood clot. Sabra A; Lawrence MJ; Curtis D; Hawkins K; Williams PR; Evans PA Clin Hemorheol Microcirc; 2019 Jul; -1():147-153. PubMed ID: 31381508 [TBL] [Abstract][Full Text] [Related]
3. The Effects of Temperature on Clot Microstructure and Strength in Healthy Volunteers. Lawrence MJ; Marsden N; Mothukuri R; Morris RH; Davies G; Hawkins K; Curtis DJ; Brown MR; Williams PR; Evans PA Anesth Analg; 2016 Jan; 122(1):21-6. PubMed ID: 26440418 [TBL] [Abstract][Full Text] [Related]
4. Fractal dimension: a novel clot microstructure biomarker use in ST elevation myocardial infarction patients. Lawrence MJ; Sabra A; Thomas P; Obaid DR; D'Silva LA; Morris RH; Hawkins K; Brown MR; Williams PR; Davidson SJ; Chase AJ; Smith D; Evans PA Atherosclerosis; 2015 Jun; 240(2):402-7. PubMed ID: 25890059 [TBL] [Abstract][Full Text] [Related]
5. A new structural biomarker that quantifies and predicts changes in clot strength and quality in a model of progressive haemodilution. Lawrence MJ; Kumar S; Hawkins K; Boden S; Rutt H; Mills G; Sabra A; Morris RH; Davidson SJ; Badiei N; Brown MR; Williams PR; Evans PA Thromb Res; 2014 Aug; 134(2):488-94. PubMed ID: 24965661 [TBL] [Abstract][Full Text] [Related]
6. Fractal dimension (df) as a new structural biomarker of clot microstructure in different stages of lung cancer. Davies NA; Harrison NK; Morris RH; Noble S; Lawrence MJ; D'Silva LA; Broome L; Brown MR; Hawkins KM; Williams PR; Davidson S; Evans PA Thromb Haemost; 2015 Nov; 114(6):1251-9. PubMed ID: 26293709 [TBL] [Abstract][Full Text] [Related]
7. Gel point and fractal microstructure of incipient blood clots are significant new markers of hemostasis for healthy and anticoagulated blood. Evans PA; Hawkins K; Morris RH; Thirumalai N; Munro R; Wakeman L; Lawrence MJ; Williams PR Blood; 2010 Oct; 116(17):3341-6. PubMed ID: 20566899 [TBL] [Abstract][Full Text] [Related]
8. Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban. Varin R; Mirshahi S; Mirshahi P; Klein C; Jamshedov J; Chidiac J; Perzborn E; Mirshahi M; Soria C; Soria J Thromb Res; 2013 Mar; 131(3):e100-9. PubMed ID: 23313382 [TBL] [Abstract][Full Text] [Related]
9. An Investigation Into the Effects of In Vitro Dilution With Different Colloid Resuscitation Fluids on Clot Microstructure Formation. Lawrence MJ; Marsden N; Kaczynski J; Davies G; Davies N; Hawkins K; Perumal S; Brown MR; Morris K; Davidson SJ; Williams PR; Evans PA Anesth Analg; 2016 Nov; 123(5):1081-1088. PubMed ID: 27636739 [TBL] [Abstract][Full Text] [Related]
11. Fibrin structure and concentration alter clot elastic modulus but do not alter platelet mediated force development. Carr ME; Carr SL Blood Coagul Fibrinolysis; 1995 Feb; 6(1):79-86. PubMed ID: 7795157 [TBL] [Abstract][Full Text] [Related]
12. Effects of exercise intensity on clot microstructure and mechanical properties in healthy individuals. Davies NA; Llwyd O; Brugniaux JV; Davies GR; Marley CJ; Hodson D; Lawrence MJ; D'Silva LA; Morris RH; Hawkins K; Williams PR; Bailey DM; Evans PA Thromb Res; 2016 Jul; 143():130-6. PubMed ID: 27240111 [TBL] [Abstract][Full Text] [Related]
13. Fibrin, γ'-fibrinogen, and transclot pressure gradient control hemostatic clot growth during human blood flow over a collagen/tissue factor wound. Muthard RW; Welsh JD; Brass LF; Diamond SL Arterioscler Thromb Vasc Biol; 2015 Mar; 35(3):645-54. PubMed ID: 25614284 [TBL] [Abstract][Full Text] [Related]
14. Platelet microtubules in clot structure formation and contractile force generation: investigation of a controversy. Jen CJ; McIntire LV Thromb Haemost; 1986 Aug; 56(1):23-7. PubMed ID: 2877507 [TBL] [Abstract][Full Text] [Related]
15. Clots of beta-fibrin. Viscoelastic properties, temperature dependence of elasticity, and interaction with fibrinogen-binding tetrapeptides. Shimizu A; Ferry JD Biophys J; 1988 Mar; 53(3):311-8. PubMed ID: 3349127 [TBL] [Abstract][Full Text] [Related]
16. Studies of whole blood coagulation by oscillatory shear, thromboelastography and free oscillation rheometry. Evans PA; Hawkins K; Lawrence M; Barrow MS; Williams PR; Williams RL Clin Hemorheol Microcirc; 2008; 38(4):267-77. PubMed ID: 18334781 [TBL] [Abstract][Full Text] [Related]
17. Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood. Liang X; Chernysh I; Purohit PK; Weisel JW Acta Biomater; 2017 Sep; 60():275-290. PubMed ID: 28694237 [TBL] [Abstract][Full Text] [Related]
18. The elastic modulus of fibrin clots and fibrinogen gels: the effect of fibronectin and dithiothreitol. Procyk R; King RG Biopolymers; 1990 Feb; 29(3):559-65. PubMed ID: 1970486 [TBL] [Abstract][Full Text] [Related]
19. Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear. Govindarajan V; Zhu S; Li R; Lu Y; Diamond SL; Reifman J; Mitrophanov AY Biophys J; 2018 Feb; 114(4):978-991. PubMed ID: 29490257 [TBL] [Abstract][Full Text] [Related]
20. The changes in clot microstructure in patients with ischaemic stroke and the effects of therapeutic intervention: a prospective observational study. Stanford SN; Sabra A; D'Silva L; Lawrence M; Morris RH; Storton S; Brown MR; Evans V; Hawkins K; Williams PR; Davidson SJ; Wani M; Potter JF; Evans PA BMC Neurol; 2015 Mar; 15():35. PubMed ID: 25885595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]