These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 25625324)

  • 21. Physics-based methods for studying protein-ligand interactions.
    Huang N; Jacobson MP
    Curr Opin Drug Discov Devel; 2007 May; 10(3):325-31. PubMed ID: 17554859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SwissParam: a fast force field generation tool for small organic molecules.
    Zoete V; Cuendet MA; Grosdidier A; Michielin O
    J Comput Chem; 2011 Aug; 32(11):2359-68. PubMed ID: 21541964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calculation of protein-ligand binding affinities.
    Gilson MK; Zhou HX
    Annu Rev Biophys Biomol Struct; 2007; 36():21-42. PubMed ID: 17201676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations.
    Michel J; Essex JW
    J Comput Aided Mol Des; 2010 Aug; 24(8):639-58. PubMed ID: 20509041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of protein-ligand binding affinities using multiple instance learning.
    Teramoto R; Kashima H
    J Mol Graph Model; 2010 Nov; 29(3):492-7. PubMed ID: 20965757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.
    Harder E; Damm W; Maple J; Wu C; Reboul M; Xiang JY; Wang L; Lupyan D; Dahlgren MK; Knight JL; Kaus JW; Cerutti DS; Krilov G; Jorgensen WL; Abel R; Friesner RA
    J Chem Theory Comput; 2016 Jan; 12(1):281-96. PubMed ID: 26584231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perspective: Alchemical free energy calculations for drug discovery.
    Mobley DL; Klimovich PV
    J Chem Phys; 2012 Dec; 137(23):230901. PubMed ID: 23267463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational approach to de novo discovery of fragment binding for novel protein states.
    Konteatis ZD; Klon AE; Zou J; Meshkat S
    Methods Enzymol; 2011; 493():357-80. PubMed ID: 21371598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular modeling of hydration in drug design.
    Mancera RL
    Curr Opin Drug Discov Devel; 2007 May; 10(3):275-80. PubMed ID: 17554853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale integrated super-computing platform for next generation virtual drug discovery.
    Mitchell W; Matsumoto S
    Curr Opin Chem Biol; 2011 Aug; 15(4):553-9. PubMed ID: 21723773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. POSIT: Flexible Shape-Guided Docking For Pose Prediction.
    Kelley BP; Brown SP; Warren GL; Muchmore SW
    J Chem Inf Model; 2015 Aug; 55(8):1771-80. PubMed ID: 26151876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural modeling of HCV NS3/4A serine protease drug-resistance mutations using end-point continuum solvation and side-chain flexibility calculations.
    Hotiana HA; Haider MK
    J Chem Inf Model; 2013 Feb; 53(2):435-51. PubMed ID: 23305404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards accurate free energy calculations in ligand protein-binding studies.
    Steinbrecher T; Labahn A
    Curr Med Chem; 2010; 17(8):767-85. PubMed ID: 20088755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding Free Energy Calculation Using Quantum Mechanics Aimed for Drug Lead Optimization.
    Cavasotto CN
    Methods Mol Biol; 2020; 2114():257-268. PubMed ID: 32016898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-Based Drug Discovery Accelerated by Many-Core Devices.
    Feinstein W; Brylinski M
    Curr Drug Targets; 2016; 17(14):1595-1609. PubMed ID: 26758669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges.
    Chen W; Deng Y; Russell E; Wu Y; Abel R; Wang L
    J Chem Theory Comput; 2018 Dec; 14(12):6346-6358. PubMed ID: 30375870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of a computational docking methodology to identify the non-covalent binding site of ligands to DNA.
    Deligkaris C; Ascone AT; Sweeney KJ; Greene AJ
    Mol Biosyst; 2014 Aug; 10(8):2106-25. PubMed ID: 24853173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.