BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25625460)

  • 1. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.
    Jeong GT; Kim SK; Park DH
    Bioresour Technol; 2015 Apr; 181():1-6. PubMed ID: 25625460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.
    Kwon OM; Kim SK; Jeong GT
    Bioprocess Biosyst Eng; 2016 Jul; 39(7):1173-80. PubMed ID: 27003825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach.
    Kumar S; Gupta R; Kumar G; Sahoo D; Kuhad RC
    Bioresour Technol; 2013 May; 135():150-6. PubMed ID: 23312437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of levulinic acid from macroalgae by hydrothermal conversion with ionic resin catalyst.
    Park Y; Jeong GT
    Bioresour Technol; 2024 Jun; 402():130778. PubMed ID: 38701985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes.
    Kim SW; Hong CH; Jeon SW; Shin HJ
    Bioresour Technol; 2015 Nov; 196():634-41. PubMed ID: 26299978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol.
    Goswami M; Meena S; Navatha S; Prasanna Rani KN; Pandey A; Sukumaran RK; Prasad RB; Prabhavathi Devi BL
    Bioresour Technol; 2015; 188():99-102. PubMed ID: 25777067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood.
    Lim WS; Lee JW
    Bioresour Technol; 2013 Jul; 140():306-11. PubMed ID: 23708848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Ethanol Yield Coefficients Using
    Park Y; Sunwoo IY; Yang J; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2020 Jan; 30(6):930-936. PubMed ID: 32238769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Severity Factor and HMF Removal of Red Macroalgae Gracilaria verrucosa to Production of Bioethanol by Pichia stipitis and Kluyveromyces marxianus with Adaptive Evolution.
    Sukwong P; Sunwoo IY; Lee MJ; Ra CH; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2019 Apr; 187(4):1312-1327. PubMed ID: 30221316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa.
    Shukla R; Kumar M; Chakraborty S; Gupta R; Kumar S; Sahoo D; Kuhad RC
    Bioresour Technol; 2016 Nov; 220():584-589. PubMed ID: 27619709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar.
    Cao L; Yu IKM; Cho DW; Wang D; Tsang DCW; Zhang S; Ding S; Wang L; Ok YS
    Bioresour Technol; 2019 Feb; 273():251-258. PubMed ID: 30448676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.
    Wu FC; Wu JY; Liao YJ; Wang MY; Shih IL
    Bioresour Technol; 2014 Mar; 156():123-31. PubMed ID: 24491295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes.
    Vavouraki AI; Volioti V; Kornaros ME
    Waste Manag; 2014 Jan; 34(1):167-73. PubMed ID: 24176238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.
    Cara C; Ruiz E; Oliva JM; Sáez F; Castro E
    Bioresour Technol; 2008 Apr; 99(6):1869-76. PubMed ID: 17498947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis.
    Kim DH; Lee SB; Jeong GT
    Bioresour Technol; 2014 Jun; 161():348-53. PubMed ID: 24727694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa.
    Ra CH; Kim YJ; Lee SY; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1715-22. PubMed ID: 25964182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds.
    Panagiotopoulos IA; Bakker RR; de Vrije T; Koukios EG
    Bioresour Technol; 2011 Dec; 102(24):11204-11. PubMed ID: 22004592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.
    Jeong TS; Choi CH; Lee JY; Oh KK
    Bioresour Technol; 2012 Jul; 116():435-40. PubMed ID: 22522017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa.
    Leema Roseline T; Sachindra NM
    Appl Biochem Biotechnol; 2018 Sep; 186(1):66-84. PubMed ID: 29504075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.