These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 25625501)
1. Proton and aluminum binding properties of organic acids in surface waters of the northeastern U.S. Fakhraei H; Driscoll CT Environ Sci Technol; 2015 Mar; 49(5):2939-47. PubMed ID: 25625501 [TBL] [Abstract][Full Text] [Related]
2. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters. Sjöstedt CS; Gustafsson JP; Köhler SJ Environ Sci Technol; 2010 Nov; 44(22):8587-93. PubMed ID: 20958024 [TBL] [Abstract][Full Text] [Related]
3. Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern U.S. Strock KE; Nelson SJ; Kahl JS; Saros JE; McDowell WH Environ Sci Technol; 2014 May; 48(9):4681-9. PubMed ID: 24669928 [TBL] [Abstract][Full Text] [Related]
4. Aluminium speciation in streams and lakes of the UK Acid Waters Monitoring Network, modelled with WHAM. Tipping E; Carter HT Sci Total Environ; 2011 Mar; 409(8):1550-8. PubMed ID: 21277614 [TBL] [Abstract][Full Text] [Related]
5. Aluminum in acidic surface waters: chemistry, transport, and effects. Driscoll CT Environ Health Perspect; 1985 Nov; 63():93-104. PubMed ID: 3935428 [TBL] [Abstract][Full Text] [Related]
6. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification. Lawrence GB; Dukett JE; Houck N; Snyder P; Capone S Environ Sci Technol; 2013 Jul; 47(13):7095-100. PubMed ID: 23751119 [TBL] [Abstract][Full Text] [Related]
7. Changes in aluminum concentrations and speciation in lakes across the northeastern U.S. following reductions in acidic deposition. Warby RA; Johnson CE; Driscoll CT Environ Sci Technol; 2008 Dec; 42(23):8668-74. PubMed ID: 19192779 [TBL] [Abstract][Full Text] [Related]
8. Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Hruska J; Köhler S; Laudon H; Bishop K Environ Sci Technol; 2003 May; 37(9):1726-30. PubMed ID: 12775041 [TBL] [Abstract][Full Text] [Related]
9. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids. Lawrence GB; Sutherland JW; Boylen CW; Nierzwicki-Bauer SW; Momen B; Baldigo BP; Simonin HA Environ Sci Technol; 2007 Jan; 41(1):93-8. PubMed ID: 17265932 [TBL] [Abstract][Full Text] [Related]
10. The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Lydersen E; Larssen T; Fjeld E Sci Total Environ; 2004 Jun; 326(1-3):63-9. PubMed ID: 15142766 [TBL] [Abstract][Full Text] [Related]
11. DGT measurement of dissolved aluminum species in waters: comparing Chelex-100 and titanium dioxide-based adsorbents. Panther JG; Bennett WW; Teasdale PR; Welsh DT; Zhao H Environ Sci Technol; 2012 Feb; 46(4):2267-75. PubMed ID: 22268706 [TBL] [Abstract][Full Text] [Related]
12. Aluminium speciation in forest soil solution--modelling the contribution of low molecular weight organic acids. van Hees PA; Tipping E; Lundström US Sci Total Environ; 2001 Oct; 278(1-3):215-29. PubMed ID: 11669269 [TBL] [Abstract][Full Text] [Related]
13. Towards the establishment of an environmental quality standard for aluminium in surface waters. Gardner MJ; Brown B; Whitehouse P; Birch M J Environ Monit; 2008 Jul; 10(7):877-82. PubMed ID: 18688456 [TBL] [Abstract][Full Text] [Related]
14. Study on the effects of organic matter characteristics on the residual aluminum and flocs in coagulation processes. Xu H; Zhang D; Xu Z; Liu Y; Jiao R; Wang D J Environ Sci (China); 2018 Jan; 63():307-317. PubMed ID: 29406114 [TBL] [Abstract][Full Text] [Related]
15. Factors affecting phosphate adsorption to aluminum in lake water: implications for lake restoration. de Vicente I; Jensen HS; Andersen FØ Sci Total Environ; 2008 Jan; 389(1):29-36. PubMed ID: 17900664 [TBL] [Abstract][Full Text] [Related]
16. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants. Kimura M; Matsui Y; Kondo K; Ishikawa TB; Matsushita T; Shirasaki N Water Res; 2013 Apr; 47(6):2075-84. PubMed ID: 23422138 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the effects of pH, hardness, and dissolved organic carbon on the toxicity of aluminum to freshwater aquatic organisms under circumneutral conditions. Gensemer RW; Gondek JC; Rodriquez PH; Arbildua JJ; Stubblefield WA; Cardwell AS; Santore RC; Ryan AC; Adams WJ; Nordheim E Environ Toxicol Chem; 2018 Jan; 37(1):49-60. PubMed ID: 28833434 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of different approaches to quantify strong organic acidity and acid-base buffering of organic-rich surface waters in Sweden. Köhler S; Hruska J; Jönsson J; Lövgren L; Lofts S Water Res; 2002 Nov; 36(18):4487-96. PubMed ID: 12418651 [TBL] [Abstract][Full Text] [Related]
19. Buffering of recovery from acidification by organic acids. Evans CD; Monteith DT; Reynolds B; Clark JM Sci Total Environ; 2008 Oct; 404(2-3):316-25. PubMed ID: 18096207 [TBL] [Abstract][Full Text] [Related]
20. Chronic toxicity of aluminum, at a pH of 6, to freshwater organisms: Empirical data for the development of international regulatory standards/criteria. Cardwell AS; Adams WJ; Gensemer RW; Nordheim E; Santore RC; Ryan AC; Stubblefield WA Environ Toxicol Chem; 2018 Jan; 37(1):36-48. PubMed ID: 28667768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]