These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25625699)

  • 21. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures.
    Lee H; Kang S; Kim W
    PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes.
    Chen J; Xu J; Li Y; Zhang J; Chen H; Lu J; Wang Z; Zhao X; Xu K; Li Y; Li X; Zhang Y
    Oncotarget; 2017 Feb; 8(6):10171-10184. PubMed ID: 28052038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New drugs for breast cancer subtypes: targeting driver pathways to overcome resistance.
    Curigliano G
    Cancer Treat Rev; 2012 Jun; 38(4):303-10. PubMed ID: 21764517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises.
    Garmpis N; Damaskos C; Garmpi A; Kalampokas E; Kalampokas T; Spartalis E; Daskalopoulou A; Valsami S; Kontos M; Nonni A; Kontzoglou K; Perrea D; Nikiteas N; Dimitroulis D
    Cancer Genomics Proteomics; 2017; 14(5):299-313. PubMed ID: 28870998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of novel drugs for promising targets.
    Martell RE; Brooks DG; Wang Y; Wilcoxen K
    Clin Ther; 2013 Sep; 35(9):1271-81. PubMed ID: 24054704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cisplatin in combination with zoledronic acid: a synergistic effect in triple-negative breast cancer cell lines.
    Ibrahim T; Liverani C; Mercatali L; Sacanna E; Zanoni M; Fabbri F; Zoli W; Amadori D
    Int J Oncol; 2013 Apr; 42(4):1263-70. PubMed ID: 23403907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: The example of luminal a breast cancer.
    Fleisher B; Brown AN; Ait-Oudhia S
    Pharmacol Res; 2017 Oct; 124():20-33. PubMed ID: 28735000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance.
    Taddia L; D'Arca D; Ferrari S; Marraccini C; Severi L; Ponterini G; Assaraf YG; Marverti G; Costi MP
    Drug Resist Updat; 2015 Nov; 23():20-54. PubMed ID: 26690339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer.
    Hu Y; Xu K; Yagüe E
    Breast Cancer Res Treat; 2015 Jun; 151(2):269-80. PubMed ID: 25900794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Successes and limitations of targeted cancer therapy in breast cancer.
    Curigliano G; Criscitiello C
    Prog Tumor Res; 2014; 41():15-35. PubMed ID: 24727984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel molecular targets in cancer chemotherapy waiting for discovery.
    Kunick C
    Curr Med Chem Anticancer Agents; 2004 Sep; 4(5):421-3. PubMed ID: 15379696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective.
    Kumalo HM; Bhakat S; Soliman ME
    Chem Biol Drug Des; 2015 Nov; 86(5):1131-60. PubMed ID: 25958815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer.
    Liu YR; Jiang YZ; Xu XE; Yu KD; Jin X; Hu X; Zuo WJ; Hao S; Wu J; Liu GY; Di GH; Li DQ; He XH; Hu WG; Shao ZM
    Breast Cancer Res; 2016 Mar; 18(1):33. PubMed ID: 26975198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice.
    Zhao RL; He YM
    J Ethnopharmacol; 2018 Jan; 210():287-295. PubMed ID: 28882624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico method for identification of promising anticancer drug targets.
    Koborova ON; Filimonov DA; Zakharov AV; Lagunin AA; Ivanov SM; Kel A; Poroikov VV
    SAR QSAR Environ Res; 2009 Oct; 20(7-8):755-66. PubMed ID: 20024808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening and identification of molecular targets for cancer therapy.
    Abdelmoez A; Coraça-Huber DC; Thurner GC; Debbage P; Lukas P; Skvortsov S; Skvortsova II
    Cancer Lett; 2017 Feb; 387():3-9. PubMed ID: 26968248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis.
    Wu T; Wang X; Li J; Song X; Wang Y; Wang Y; Zhang L; Li Z; Tian J
    PLoS One; 2015; 10(6):e0131183. PubMed ID: 26126114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
    Kong D; Yamori T
    Bioorg Med Chem; 2012 Mar; 20(6):1947-51. PubMed ID: 22336246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.