These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1382 related articles for article (PubMed ID: 25625769)
1. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. Zheng Q; Cai Z; Ma Z; Gong S ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769 [TBL] [Abstract][Full Text] [Related]
2. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance. Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632 [TBL] [Abstract][Full Text] [Related]
3. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422 [TBL] [Abstract][Full Text] [Related]
4. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector. Notarianni M; Liu J; Mirri F; Pasquali M; Motta N Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789 [TBL] [Abstract][Full Text] [Related]
5. Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Yu M; Han Y; Li Y; Li J; Wang L Carbohydr Polym; 2018 Nov; 199():555-562. PubMed ID: 30143162 [TBL] [Abstract][Full Text] [Related]
6. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. Song WL; Song K; Fan LZ ACS Appl Mater Interfaces; 2015 Feb; 7(7):4257-64. PubMed ID: 25654650 [TBL] [Abstract][Full Text] [Related]
7. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Kang YJ; Chung H; Han CH; Kim W Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712 [TBL] [Abstract][Full Text] [Related]
8. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. Jin Y; Chen H; Chen M; Liu N; Li Q ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813 [TBL] [Abstract][Full Text] [Related]
9. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. Wang M; Duong le D; Mai NT; Kim S; Kim Y; Seo H; Kim YC; Jang W; Lee Y; Suhr J; Nam JD ACS Appl Mater Interfaces; 2015 Jan; 7(2):1348-54. PubMed ID: 25545033 [TBL] [Abstract][Full Text] [Related]
10. Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatom-doped Carbon Nanofibers for Flexible Supercapacitors. Liu R; Ma L; Mei J; Huang S; Yang S; Li E; Yuan G Chemistry; 2017 Feb; 23(11):2610-2618. PubMed ID: 28000323 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors. Ben J; Song Z; Liu X; Lü W; Li X Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960 [TBL] [Abstract][Full Text] [Related]
12. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors. He Y; Chen W; Zhou J; Li X; Tang P; Zhang Z; Fu J; Xie E ACS Appl Mater Interfaces; 2014 Jan; 6(1):210-8. PubMed ID: 24325338 [TBL] [Abstract][Full Text] [Related]
13. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Jung SM; Mafra DL; Lin CT; Jung HY; Kong J Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978 [TBL] [Abstract][Full Text] [Related]
14. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
15. Flexible polyester cellulose paper supercapacitor with a gel electrolyte. Karthika P; Rajalakshmi N; Dhathathreyan KS Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269 [TBL] [Abstract][Full Text] [Related]
16. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832 [TBL] [Abstract][Full Text] [Related]
18. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors. Ko WY; Chen YF; Lu KM; Lin KJ Sci Rep; 2016 Jan; 6():18887. PubMed ID: 26726724 [TBL] [Abstract][Full Text] [Related]
19. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes. Yang Y; Xi Y; Li J; Wei G; Klyui NI; Han W Nanoscale Res Lett; 2017 Dec; 12(1):394. PubMed ID: 28599513 [TBL] [Abstract][Full Text] [Related]
20. Hierarchically core-shell structured nanocellulose/carbon nanotube hybrid aerogels for patternable, self-healing and flexible supercapacitors. Cheng X; Wang H; Wang S; Jiao Y; Sang C; Jiang S; He S; Mei C; Xu X; Xiao H; Han J J Colloid Interface Sci; 2024 Apr; 660():923-933. PubMed ID: 38280285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]