These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25625877)

  • 1. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.
    Schein P; Kang P; O'Dell D; Erickson D
    Nano Lett; 2015 Feb; 15(2):1414-20. PubMed ID: 25625877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Characterization of Nanoparticle Size and Particle-Surface Interactions with Three-Dimensional Nanophotonic Force Microscopy.
    O'Dell D; Schein P; Erickson D
    Phys Rev Appl; 2016 Sep; 6():. PubMed ID: 30417030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.
    Schein P; Ashcroft CK; O'Dell D; Adam IS; DiPaolo B; Sabharwal M; Shi C; Hart R; Earhart C; Erickson D
    J Lightwave Technol; 2015 Aug; 33(16):3494-3502. PubMed ID: 26855473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface characterization of nanoparticles using near-field light scattering.
    Yoo E; Liu Y; Nwasike CA; Freeman SR; DiPaolo BC; Cordovez B; Doiron AL
    Beilstein J Nanotechnol; 2018; 9():1228-1238. PubMed ID: 29765800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting physical stability in pressurized metered dose inhalers via dwell and instantaneous force colloidal probe microscopy.
    D'Sa D; Chan HK; Chrzanowski W
    Eur J Pharm Biopharm; 2014 Sep; 88(1):129-35. PubMed ID: 25058596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using single nanoparticle tracking obtained by nanophotonic force microscopy to simultaneously characterize nanoparticle size distribution and nanoparticle-surface interactions.
    Hristov DR; Ye D; de Araújo JM; Ashcroft C; DiPaolo B; Hart R; Earhart C; Lopez H; Dawson KA
    Nanoscale; 2017 Mar; 9(13):4524-4535. PubMed ID: 28317988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomanipulation using silicon photonic crystal resonators.
    Mandal S; Serey X; Erickson D
    Nano Lett; 2010 Jan; 10(1):99-104. PubMed ID: 19957918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex.
    Figliozzi P; Sule N; Yan Z; Bao Y; Burov S; Gray SK; Rice SA; Vaikuntanathan S; Scherer NF
    Phys Rev E; 2017 Feb; 95(2-1):022604. PubMed ID: 28298004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical forces on metallic nanoparticles induced by a photonic nanojet.
    Cui X; Erni D; Hafner C
    Opt Express; 2008 Sep; 16(18):13560-8. PubMed ID: 18772965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating microparticles with single surface-immobilized nanoparticles.
    Zhang J; Srivastava S; Duffadar R; Davis JM; Rotello VM; Santore MM
    Langmuir; 2008 Jun; 24(13):6404-8. PubMed ID: 18537273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes.
    Farré A; Marsà F; Montes-Usategui M
    Methods Mol Biol; 2017; 1486():41-76. PubMed ID: 27844425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurements of particle-surface interactions in aqueous solutions with total internal reflection microscopy.
    Gong X; Wang Z; Ngai T
    Chem Commun (Camb); 2014 Jun; 50(50):6556-70. PubMed ID: 24718492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct surface force measurement in water using a nanosize colloidal probe technique.
    Cho JM; Sigmund WM
    J Colloid Interface Sci; 2002 Jan; 245(2):405-7. PubMed ID: 16290376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered Surface Structuring of Spherical Colloids with Binary Nanoparticle Superlattices.
    Meder F; Thomas SS; Bollhorst T; Dawson KA
    Nano Lett; 2018 Apr; 18(4):2511-2518. PubMed ID: 29579388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AFM colloidal forces measured between microscopic probes and flat substrates in nanoparticle suspensions.
    Drelich J; Long J; Xu Z; Masliyah J; Nalaskowski J; Beauchamp R; Liu Y
    J Colloid Interface Sci; 2006 Sep; 301(2):511-22. PubMed ID: 16782121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping and Deposition of Dye-Molecule Nanoparticles in the Nanogap of a Plasmonic Antenna.
    Pin C; Ishida S; Takahashi G; Sudo K; Fukaminato T; Sasaki K
    ACS Omega; 2018 May; 3(5):4878-4883. PubMed ID: 31458703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina.
    Drelich J; Long J; Xu Z; Masliyah J; White CL
    J Colloid Interface Sci; 2006 Nov; 303(2):627-38. PubMed ID: 16942778
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.