These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 25625888)

  • 1. High compressive pre-strains reduce the bending fatigue life of nitinol wire.
    Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S
    J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotary-bending fatigue characteristics of medical-grade Nitinol wire.
    Pelton AR; Fino-Decker J; Vien L; Bonsignore C; Saffari P; Launey M; Mitchell MR
    J Mech Behav Biomed Mater; 2013 Nov; 27():19-32. PubMed ID: 23838356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing.
    Robertson SW; Launey M; Shelley O; Ong I; Vien L; Senthilnathan K; Saffari P; Schlegel S; Pelton AR
    J Mech Behav Biomed Mater; 2015 Nov; 51():119-31. PubMed ID: 26241890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Applied Potential on Fatigue Life of Electropolished Nitinol Wires.
    Sivan S; Di Prima M; Weaver JD
    Shap Mem Superelasticity; 2017 Sep; 3():238-249. PubMed ID: 37700745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic Nitinol.
    Launey M; Robertson SW; Vien L; Senthilnathan K; Chintapalli P; Pelton AR
    J Mech Behav Biomed Mater; 2014 Jun; 34():181-6. PubMed ID: 24603214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Nitinol Stents Using a 3-Dimensional Printed Superficial Femoral Artery Model: A Preliminary Study.
    Girsowicz E; Georg Y; Seiller H; Lejay A; Thaveau F; Heim F; Chakfe N
    Ann Vasc Surg; 2016 May; 33():1-10. PubMed ID: 26597246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-cycle fatigue behavior of beta-titanium orthodontic wires.
    Murakami T; Iijima M; Muguruma T; Yano F; Kawashima I; Mizoguchi I
    Dent Mater J; 2015; 34(2):189-95. PubMed ID: 25740165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the experimental testing of fine Nitinol wires for medical devices.
    Henderson E; Nash DH; Dempster WM
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):261-8. PubMed ID: 21316613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue failure of as-received and retrieved NiTi orthodontic archwires.
    Bourauel C; Scharold W; Jäger A; Eliades T
    Dent Mater; 2008 Aug; 24(8):1095-101. PubMed ID: 18289660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue.
    Ye J; Gao Y
    J Endod; 2012 Jan; 38(1):105-7. PubMed ID: 22152631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cycle fatigue of rotary NiTi endodontic instruments in hypochlorite solution.
    Cheung GS; Darvell BW
    Dent Mater; 2008 Jun; 24(6):753-9. PubMed ID: 17996288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitinol, Stainless Steel, and Titanium Kirschner Wire Durability.
    Jastifer JR; Gustafson PA; Silva LF; Noffsinger S; Coughlin MJ
    Foot Ankle Spec; 2021 Aug; 14(4):317-323. PubMed ID: 32336159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material.
    McKelvey AL; Ritchie RO
    J Biomed Mater Res; 1999 Dec; 47(3):301-8. PubMed ID: 10487880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design.
    Müller-Hülsbeck S; Schäfer PJ; Charalambous N; Yagi H; Heller M; Jahnke T
    J Endovasc Ther; 2010 Dec; 17(6):767-76. PubMed ID: 21142489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue.
    Young JM; Van Vliet KJ
    J Biomed Mater Res B Appl Biomater; 2005 Jan; 72(1):17-26. PubMed ID: 15389502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental fatigue of superelastic NiTi wire with two surface finishes.
    Racek J; Šittner P
    J Mech Behav Biomed Mater; 2020 Nov; 111():104028. PubMed ID: 32818770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications.
    Bhardwaj A; Gupta AK; Padisala SK; Poluri K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():730-742. PubMed ID: 31147045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the fatigue properties of small diameter wires used in intramuscular electrodes.
    Scheiner A; Mortimer JT; Kicher TP
    J Biomed Mater Res; 1991 May; 25(5):589-608. PubMed ID: 1869576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.