These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25625905)

  • 41. Development of a Wearable Ultrasound Transducer for Sensing Muscle Activities in Assistive Robotics Applications.
    Xue X; Zhang B; Moon S; Xu GX; Huang CC; Sharma N; Jiang X
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrasonic Transducers Made From Freeze-Cast Porous Piezoceramics.
    Rymansaib Z; Kurt P; Zhang Y; Roscow JI; Bowen CR; Hunter AJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Mar; 69(3):1100-1111. PubMed ID: 35041603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
    Dausch DE; Castellucci JB; Chou DR; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2484-92. PubMed ID: 19049928
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catheter ultrasound phased-array transducers for thermal ablation: a feasibility study.
    Gentry KL; Sachedina N; Smith SW
    Ultrason Imaging; 2005 Apr; 27(2):89-100. PubMed ID: 16231838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.
    Zhou Q; Lau S; Wu D; Shung KK
    Prog Mater Sci; 2011 Feb; 56(2):139-174. PubMed ID: 21720451
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.
    Kim J; Li S; Kasoji S; Dayton PA; Jiang X
    Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and 3D FEM Analysis of a Flexible Piezoelectric Micromechanical Ultrasonic Transducer Based on Sc-Doped AlN Film.
    Ren Q; Chen J; Liu X; Zhang S; Gu Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved Performance of -Mode Needle-Actuating Transducer With PMN-PT Piezocrystal.
    Jiang T; Xia C; Cochran S; Huang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1415-1422. PubMed ID: 29994524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High frequency piezoelectric MEMS ultrasound transducers.
    Mina IG; Kim H; Kim I; Park SK; Choi K; Jackson TN; Tutwiler RL; Trolier-McKinstry S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2422-30. PubMed ID: 18276533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of micromachined self-focusing piezoelectric composite ultrasound transducer.
    Jian X; Xiang Y; Han Z; Li Z; Cui Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():550-3. PubMed ID: 25570018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode.
    Fu Z; Xian X; Lin S; Wang C; Hu W; Li G
    Ultrasonics; 2012 Jul; 52(5):578-86. PubMed ID: 22273150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.
    Wygant IO; Jamal NS; Lee HJ; Nikoozadeh A; Oralkan O; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2145-56. PubMed ID: 19942502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Piezoelectric Characteristics of 0.55Pb(Ni
    Kang M; Kang LH
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid prototyping fabrication of focused ultrasound transducers.
    Kim Y; Maxwell AD; Hall TL; Xu Z; Lin KW; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1559-74. PubMed ID: 25167156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The improvement of dynamic characteristics of ultrasonic therapeutic transducers using fine-grain PZT-based piezoceramics.
    Tsai CC; Chiang TK; Chu SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):156-66. PubMed ID: 19213642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of lead-free (Bi 1/2 Na 1/2)BaTiO3 piezoelectric ceramics for clinical applications.
    Rodríguez-Ruiz R; Suaste-Gómez E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2223-6. PubMed ID: 18002432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrasonic transducers based on undoped lead-free (K0.5Na0.5)NbO3 ceramics.
    Bah M; Giovannelli F; Schoenstein F; Brosseau C; Deschamps JR; Dorvaux F; Haumesser L; Le Clezio E; Monot-Laffez I
    Ultrasonics; 2015 Dec; 63():23-30. PubMed ID: 26117145
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.
    Pichardo S; Silva RR; Rubel O; Curiel L
    PLoS One; 2015; 10(9):e0139178. PubMed ID: 26418550
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system.
    Hagh NM; Jadidian B; Ashbahian E; Safari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):214-24. PubMed ID: 18334327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.