These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25625933)

  • 1. Regulatory considerations for clinical development of cancer vaccines.
    Heelan BT
    Hum Vaccin Immunother; 2014; 10(11):3409-14. PubMed ID: 25625933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.
    Seledtsov VI; Goncharov AG; Seledtsova GV
    Hum Vaccin Immunother; 2015; 11(4):851-69. PubMed ID: 25933181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic gene modified cell based cancer vaccines.
    Kozłowska A; Mackiewicz J; Mackiewicz A
    Gene; 2013 Aug; 525(2):200-7. PubMed ID: 23566846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMA901: a multi-peptide cancer vaccine for treatment of renal cell cancer.
    Kirner A; Mayer-Mokler A; Reinhardt C
    Hum Vaccin Immunother; 2014; 10(11):3179-89. PubMed ID: 25625928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pediatric drug development: ICH harmonized tripartite guideline E11 within the United States of America, the European Union, and Japan].
    Pflieger M; Bertram D
    Arch Pediatr; 2014 Oct; 21(10):1129-38. PubMed ID: 25175054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tecemotide: an antigen-specific cancer immunotherapy.
    Wurz GT; Kao CJ; Wolf M; DeGregorio MW
    Hum Vaccin Immunother; 2014; 10(11):3383-93. PubMed ID: 25483673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigen-specific vaccines for cancer treatment.
    Tagliamonte M; Petrizzo A; Tornesello ML; Buonaguro FM; Buonaguro L
    Hum Vaccin Immunother; 2014; 10(11):3332-46. PubMed ID: 25483639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.
    Figueroa JA; Reidy A; Mirandola L; Trotter K; Suvorava N; Figueroa A; Konala V; Aulakh A; Littlefield L; Grizzi F; Rahman RL; Jenkins MR; Musgrove B; Radhi S; D'Cunha N; D'Cunha LN; Hermonat PL; Cobos E; Chiriva-Internati M
    Int Rev Immunol; 2015 Mar; 34(2):154-87. PubMed ID: 25901860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current perspectives on immunotherapy.
    Weber JS
    Semin Oncol; 2014 Oct; 41 Suppl 5():S14-29. PubMed ID: 25438996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. International Conference on Harmonisation; addendum to International Conference on Harmonisation Guidance on S6 Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals; availability. Notice.
    Food and Drug Administration, HHS
    Fed Regist; 2012 May; 77(97):29665-6. PubMed ID: 22616137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adding fuel to the fire: immunogenic intensification.
    O'Sullivan Coyne G; Gulley JL
    Hum Vaccin Immunother; 2014; 10(11):3306-12. PubMed ID: 25483630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DCVax®-L--developed by Northwest Biotherapeutics.
    Polyzoidis S; Ashkan K
    Hum Vaccin Immunother; 2014; 10(11):3139-45. PubMed ID: 25483653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory advice and drug development--a case study in negotiating with regulators.
    Seldrup J
    Stat Med; 2011 Jun; 30(13):1628-35. PubMed ID: 21365671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A clinical development paradigm for cancer vaccines and related biologics.
    Hoos A; Parmiani G; Hege K; Sznol M; Loibner H; Eggermont A; Urba W; Blumenstein B; Sacks N; Keilholz U; Nichol G;
    J Immunother; 2007 Jan; 30(1):1-15. PubMed ID: 17198079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons learned from independent central review.
    Ford R; Schwartz L; Dancey J; Dodd LE; Eisenhauer EA; Gwyther S; Rubinstein L; Sargent D; Shankar L; Therasse P; Verweij J
    Eur J Cancer; 2009 Jan; 45(2):268-74. PubMed ID: 19101138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking immunotolerance of tumors: a new perspective for dendritic cell therapy.
    Rolinski J; Hus I
    J Immunotoxicol; 2014 Oct; 11(4):311-8. PubMed ID: 24495309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy.
    Amedei A; Niccolai E; Prisco D
    Hum Vaccin Immunother; 2014; 10(11):3354-68. PubMed ID: 25483688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Tumor vaccines and peptide-loaded dendritic cells (DCs)].
    Schummer V; Flindt S; Hinz T
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2015 Nov; 58(11-12):1254-8. PubMed ID: 26349562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    Anticancer Res; 2000; 20(4):2665-76. PubMed ID: 10953341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer vaccines: an update with special focus on ganglioside antigens.
    Bitton RJ; Guthmann MD; Gabri MR; Carnero AJ; Alonso DF; Fainboim L; Gomez DE
    Oncol Rep; 2002; 9(2):267-76. PubMed ID: 11836591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.