BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25626086)

  • 1. Population diversification in a yeast metabolic program promotes anticipation of environmental shifts.
    Venturelli OS; Zuleta I; Murray RM; El-Samad H
    PLoS Biol; 2015 Jan; 13(1):e1002042. PubMed ID: 25626086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff.
    Wang J; Atolia E; Hua B; Savir Y; Escalante-Chong R; Springer M
    PLoS Biol; 2015 Jan; 13(1):e1002041. PubMed ID: 25626068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different levels of catabolite repression optimize growth in stable and variable environments.
    New AM; Cerulus B; Govers SK; Perez-Samper G; Zhu B; Boogmans S; Xavier JB; Verstrepen KJ
    PLoS Biol; 2014 Jan; 12(1):e1001764. PubMed ID: 24453942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö; Nielsen J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Springing into Action: Reg2 Negatively Regulates Snf1 Protein Kinase and Facilitates Recovery from Prolonged Glucose Starvation in Saccharomyces cerevisiae.
    Maziarz M; Shevade A; Barrett L; Kuchin S
    Appl Environ Microbiol; 2016 Jul; 82(13):3875-3885. PubMed ID: 27107116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polygenic evolution of a sugar specialization trade-off in yeast.
    Roop JI; Chang KC; Brem RB
    Nature; 2016 Feb; 530(7590):336-9. PubMed ID: 26863195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions.
    van den Brink J; Akeroyd M; van der Hoeven R; Pronk JT; de Winde JH; Daran-Lapujade P
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1340-1350. PubMed ID: 19332835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch.
    Demir O; Aksan Kurnaz I
    Comput Biol Chem; 2006 Jun; 30(3):179-92. PubMed ID: 16679066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates.
    Fendt SM; Sauer U
    BMC Syst Biol; 2010 Feb; 4():12. PubMed ID: 20167065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains.
    Pannala VR; Hazarika SJ; Bhat PJ; Bhartiya S; Venkatesh KV
    IET Syst Biol; 2012 Apr; 6(2):44-53. PubMed ID: 22519357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Crabtree Effect Shapes the Saccharomyces cerevisiae Lag Phase during the Switch between Different Carbon Sources.
    Perez-Samper G; Cerulus B; Jariani A; Vermeersch L; Barrajón Simancas N; Bisschops MMM; van den Brink J; Solis-Escalante D; Gallone B; De Maeyer D; van Bael E; Wenseleers T; Michiels J; Marchal K; Daran-Lapujade P; Verstrepen KJ
    mBio; 2018 Oct; 9(5):. PubMed ID: 30377274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae.
    Ostergaard S; Walløe KO; Gomes SG; Olsson L; Nielsen J
    FEMS Yeast Res; 2001 Apr; 1(1):47-55. PubMed ID: 12702462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.
    Lodi T; Goffrini P; Ferrero I; Donnini C
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2201-9. PubMed ID: 7496532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose and nitrogen regulate the switch from histone deacetylation to acetylation for expression of early meiosis-specific genes in budding yeast.
    Pnueli L; Edry I; Cohen M; Kassir Y
    Mol Cell Biol; 2004 Jun; 24(12):5197-208. PubMed ID: 15169885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulated Formation of lncRNA-DNA Hybrids Enables Faster Transcriptional Induction and Environmental Adaptation.
    Cloutier SC; Wang S; Ma WK; Al Husini N; Dhoondia Z; Ansari A; Pascuzzi PE; Tran EJ
    Mol Cell; 2016 Feb; 61(3):393-404. PubMed ID: 26833086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose.
    Hovland P; Flick J; Johnston M; Sclafani RA
    Gene; 1989 Nov; 83(1):57-64. PubMed ID: 2512199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae.
    Campbell RN; Leverentz MK; Ryan LA; Reece RJ
    Biochem J; 2008 Sep; 414(2):177-87. PubMed ID: 18687061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex.
    Platt A; Reece RJ
    EMBO J; 1998 Jul; 17(14):4086-91. PubMed ID: 9670023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks.
    Cakir T; Kirdar B; Ulgen KO
    Biotechnol Bioeng; 2004 May; 86(3):251-60. PubMed ID: 15083505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.