BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25626329)

  • 1. Targeting mitochondria for cancer treatment - two types of mitochondrial dysfunction.
    Pokorný J; Pokorný J; Kobilková J; Jandová A; Vrba J; Vrba J
    Prague Med Rep; 2014; 115(3-4):104-19. PubMed ID: 25626329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warburg effect-damping of electromagnetic oscillations.
    Pokorný J; Pokorný J; Borodavka F
    Electromagn Biol Med; 2017; 36(3):270-278. PubMed ID: 28574758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial metabolism - neglected link of cancer transformation and treatment.
    Pokorný J; Jandová A; Nedbalová M; Jelínek F; Cifra M; Kučera O; Havelka D; Vrba J; Vrba J; Coček A; Kobilková J
    Prague Med Rep; 2012; 113(2):81-94. PubMed ID: 22691280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer.
    Pokorný J; Pokorný J; Foletti A; Kobilková J; Vrba J; Vrba J
    Pharmaceuticals (Basel); 2015 Sep; 8(4):675-95. PubMed ID: 26437417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical insights into cancer transformation and treatment.
    Pokorný J; Foletti A; Kobilková J; Jandová A; Vrba J; Vrba J; Nedbalová M; Čoček A; Danani A; Tuszyński JA
    ScientificWorldJournal; 2013; 2013():195028. PubMed ID: 23844381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postulates on electromagnetic activity in biological systems and cancer.
    Pokorný J; Pokorný J; Kobilková J
    Integr Biol (Camb); 2013 Dec; 5(12):1439-46. PubMed ID: 24166132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationale for mitochondria-targeting strategies in cancer bioenergetic therapies.
    Jose C; Rossignol R
    Int J Biochem Cell Biol; 2013 Jan; 45(1):123-9. PubMed ID: 22776740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcoid-derived fibroblasts: links between genomic instability, energy metabolism and senescence.
    Potocki L; Lewinska A; Klukowska-Rötzler J; Bielak-Zmijewska A; Grabowska W; Rzeszutek I; Kaminska P; Roga E; Bugno-Poniewierska M; Slota E; Mählmann K; Koch C; Wnuk M
    Biochimie; 2014 Feb; 97():163-72. PubMed ID: 24148276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothesis of mitochondrial oncogenesis as the trigger of normal cells to cancer cells.
    Du J
    Med Hypotheses; 2014 Jun; 82(6):744-7. PubMed ID: 24702837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2.
    Chen M; Wang Y; Hou T; Zhang H; Qu A; Wang X
    Acta Biochim Biophys Sin (Shanghai); 2011 Oct; 43(10):822-30. PubMed ID: 21880604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects.
    Amo T; Sato S; Saiki S; Wolf AM; Toyomizu M; Gautier CA; Shen J; Ohta S; Hattori N
    Neurobiol Dis; 2011 Jan; 41(1):111-8. PubMed ID: 20817094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional effects of cancer mitochondria on energy metabolism and tumorigenesis: utility of transmitochondrial cybrids.
    Kaipparettu BA; Ma Y; Wong LJ
    Ann N Y Acad Sci; 2010 Jul; 1201():137-46. PubMed ID: 20649550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts.
    Guillery O; Malka F; Frachon P; Milea D; Rojo M; Lombès A
    Neuromuscul Disord; 2008 Apr; 18(4):319-30. PubMed ID: 18395446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome.
    Grosser E; Hirt U; Janc OA; Menzfeld C; Fischer M; Kempkes B; Vogelgesang S; Manzke TU; Opitz L; Salinas-Riester G; Müller M
    Neurobiol Dis; 2012 Oct; 48(1):102-14. PubMed ID: 22750529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrograde regulation due to mitochondrial dysfunction may be an important mechanism for carcinogenesis.
    Erol A
    Med Hypotheses; 2005; 65(3):525-9. PubMed ID: 15905043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer.
    Jin LH; Wei C
    Asian Pac J Cancer Prev; 2014; 15(17):7015-9. PubMed ID: 25227784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.