These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

913 related articles for article (PubMed ID: 25626353)

  • 1. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Animal models for familial Parkinson's disease].
    Takahashi R
    Rinsho Shinkeigaku; 2007 Nov; 47(11):938-40. PubMed ID: 18210841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular interaction between parkin and PINK1 in mammalian neuronal cells.
    Um JW; Stichel-Gunkel C; Lübbert H; Lee G; Chung KC
    Mol Cell Neurosci; 2009 Apr; 40(4):421-32. PubMed ID: 19167501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dynamics, cell death and the pathogenesis of Parkinson's disease.
    Büeler H
    Apoptosis; 2010 Nov; 15(11):1336-53. PubMed ID: 20131004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic mutations and functions of PINK1.
    Kawajiri S; Saiki S; Sato S; Hattori N
    Trends Pharmacol Sci; 2011 Oct; 32(10):573-80. PubMed ID: 21784538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heredity in Parkinson's disease: new findings.
    Lev N; Melamed E
    Isr Med Assoc J; 2001 Jun; 3(6):435-8. PubMed ID: 11433638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PINK1 phosphorylates transglutaminase 2 and blocks its proteasomal degradation.
    Min B; Kwon YC; Choe KM; Chung KC
    J Neurosci Res; 2015 May; 93(5):722-35. PubMed ID: 25557247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease.
    Um JW; Park HJ; Song J; Jeon I; Lee G; Lee PH; Chung KC
    Biochem Biophys Res Commun; 2010 Mar; 393(4):824-8. PubMed ID: 20171192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons.
    Wang HL; Chou AH; Wu AS; Chen SY; Weng YH; Kao YC; Yeh TH; Chu PJ; Lu CS
    Biochim Biophys Acta; 2011 Jun; 1812(6):674-84. PubMed ID: 21421046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.
    Heeman B; Van den Haute C; Aelvoet SA; Valsecchi F; Rodenburg RJ; Reumers V; Debyser Z; Callewaert G; Koopman WJ; Willems PH; Baekelandt V
    J Cell Sci; 2011 Apr; 124(Pt 7):1115-25. PubMed ID: 21385841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1).
    Mills RD; Sim CH; Mok SS; Mulhern TD; Culvenor JG; Cheng HC
    J Neurochem; 2008 Apr; 105(1):18-33. PubMed ID: 18221368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice.
    Kitada T; Pisani A; Porter DR; Yamaguchi H; Tscherter A; Martella G; Bonsi P; Zhang C; Pothos EN; Shen J
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11441-6. PubMed ID: 17563363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss-of-function rodent models for parkin and PINK1.
    Oliveras-Salvá M; Van Rompuy AS; Heeman B; Van den Haute C; Baekelandt V
    J Parkinsons Dis; 2011; 1(3):229-51. PubMed ID: 23939304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of Parkinson's disease-associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons.
    Giguère N; Pacelli C; Saumure C; Bourque MJ; Matheoud D; Levesque D; Slack RS; Park DS; Trudeau LÉ
    J Biol Chem; 2018 Jun; 293(25):9580-9593. PubMed ID: 29700116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1).
    Kim J; Fiesel FC; Belmonte KC; Hudec R; Wang WX; Kim C; Nelson PT; Springer W; Kim J
    Mol Neurodegener; 2016 Jul; 11(1):55. PubMed ID: 27456084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner.
    Moriwaki Y; Kim YJ; Ido Y; Misawa H; Kawashima K; Endo S; Takahashi R
    Neurosci Res; 2008 May; 61(1):43-8. PubMed ID: 18359116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.