These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 25626533)
1. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection. Oliveira KA; de Souza FR; de Oliveira CR; da Silveira LA; Coltro WK Methods Mol Biol; 2015; 1256():85-98. PubMed ID: 25626533 [TBL] [Abstract][Full Text] [Related]
2. Capillary-driven toner-based microfluidic devices for clinical diagnostics with colorimetric detection. de Souza FR; Alves GL; Coltro WK Anal Chem; 2012 Nov; 84(21):9002-7. PubMed ID: 23072590 [TBL] [Abstract][Full Text] [Related]
3. Toner and paper-based fabrication techniques for microfluidic applications. Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in low-cost microfluidic platforms for diagnostic applications. Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896 [TBL] [Abstract][Full Text] [Related]
6. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Ellerbee AK; Phillips ST; Siegel AC; Mirica KA; Martinez AW; Striehl P; Jain N; Prentiss M; Whitesides GM Anal Chem; 2009 Oct; 81(20):8447-52. PubMed ID: 19722495 [TBL] [Abstract][Full Text] [Related]
7. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner. Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918 [TBL] [Abstract][Full Text] [Related]
8. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Yang X; Forouzan O; Brown TP; Shevkoplyas SS Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609 [TBL] [Abstract][Full Text] [Related]
9. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis. Zhu H; Ozcan A Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539 [TBL] [Abstract][Full Text] [Related]
10. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics. Balsam J; Bruck HA; Rasooly A Methods Mol Biol; 2015; 1256():247-58. PubMed ID: 25626544 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic devices obtained by thermal toner transferring on glass substrate. do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679 [TBL] [Abstract][Full Text] [Related]
12. Mobile phone based electrochemiluminescence detection in paper-based microfluidic sensors. Delaney JL; Hogan CF Methods Mol Biol; 2015; 1256():277-89. PubMed ID: 25626546 [TBL] [Abstract][Full Text] [Related]
13. Diagnostics for the developing world: microfluidic paper-based analytical devices. Martinez AW; Phillips ST; Whitesides GM; Carrilho E Anal Chem; 2010 Jan; 82(1):3-10. PubMed ID: 20000334 [TBL] [Abstract][Full Text] [Related]
14. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices. Liu M; Zhang C; Liu F Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382 [TBL] [Abstract][Full Text] [Related]
15. Paper-Based Microfluidic Analytical Device Patterned by Label Printer for Point-of-Care Blood Glucose and Hematocrit Detection Using 3D-Printed Smartphone Cassette. Cai ZX; Jiang MZ; Chuang YJ; Kuo JN Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123836 [TBL] [Abstract][Full Text] [Related]
16. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026 [TBL] [Abstract][Full Text] [Related]
17. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Xia Y; Si J; Li Z Biosens Bioelectron; 2016 Mar; 77():774-89. PubMed ID: 26513284 [TBL] [Abstract][Full Text] [Related]
18. Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples. Zhang L; Cao X; Wang L; Zhao X; Zhang S; Wang P Analyst; 2015 Jun; 140(12):4105-13. PubMed ID: 25893863 [TBL] [Abstract][Full Text] [Related]
20. Development of a paper-based microfluidic analytical device by a more facile hydrophobic substrate generation strategy. Xue YY; Zhang WT; Zhang MY; Liu LZ; Zhu WX; Yan LZ; Wang J; Wang YR; Wang JL; Zhang DH Anal Biochem; 2017 May; 525():100-106. PubMed ID: 28263739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]