These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25626541)

  • 1. A wearable sensing system for assessment of exposures to environmental volatile organic compounds.
    Chen C; Tsow F; Xian X; Forzani E; Tao N; Tsui R
    Methods Mol Biol; 2015; 1256():201-11. PubMed ID: 25626541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors.
    Deng Y; Chen C; Xian X; Tsow F; Verma G; McConnell R; Fruin S; Tao N; Forzani ES
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of volatile organic compounds in contaminated air using semipermeable membrane devices.
    Ly-VerdĂș S; Esteve-Turrillas FA; Pastor A; de la Guardia M
    Talanta; 2010 Mar; 80(5):2041-8. PubMed ID: 20152450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of volatile organic compounds using a single tin dioxide sensor.
    Caldararu F; Vatra C; Caldararu M
    J Environ Monit; 2012 Oct; 14(10):2616-23. PubMed ID: 22918452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a high-performance portable GC with a chemiresistor array detector.
    Zhong Q; Steinecker WH; Zellers ET
    Analyst; 2009 Feb; 134(2):283-93. PubMed ID: 19173051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Environmental Monitor To Quantify Personal Ambient Volatile Organic Compound Exposures.
    Fung AG; Rajapakse MY; McCartney MM; Falcon AK; Fabia FM; Kenyon NJ; Davis CE
    ACS Sens; 2019 May; 4(5):1358-1364. PubMed ID: 31074262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.
    Woolfenden E
    J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.
    Fraiwan A; Lee H; Choi S
    Talanta; 2016 Sep; 158():57-62. PubMed ID: 27343578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual channel gas chromatograph for atmospheric analysis of volatile organic compounds including oxygenated and monoterpene compounds.
    Hopkins JR; Jones CE; Lewis AC
    J Environ Monit; 2011 Aug; 13(8):2268-76. PubMed ID: 21701721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of very volatile organic compounds in water samples by purge and trap analysis with a needle-type extraction device.
    Ueta I; Mitsumori T; Suzuki Y; Kawakubo S; Saito Y
    J Chromatogr A; 2015 Jun; 1397():27-31. PubMed ID: 25900743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wireless hybrid chemical sensor for detection of environmental volatile organic compounds.
    Chen C; Tsow F; Campbell KD; Iglesias R; Forzani E; Tao NJ
    IEEE Sens J; 2013 May; 13(5):1748-1755. PubMed ID: 24078793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.
    Woolfenden E
    J Chromatogr A; 2010 Apr; 1217(16):2685-94. PubMed ID: 20106482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-cost sensing system for cooperative air quality monitoring in urban areas.
    Brienza S; Galli A; Anastasi G; Bruschi P
    Sensors (Basel); 2015 May; 15(6):12242-59. PubMed ID: 26016912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Performance Colorimetric Carbon Monoxide Sensor for Continuous Personal Exposure Monitoring.
    Lin C; Xian X; Qin X; Wang D; Tsow F; Forzani E; Tao N
    ACS Sens; 2018 Feb; 3(2):327-333. PubMed ID: 29299924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air.
    Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N
    J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of evacuated canisters for sampling volatile organic compounds in healthcare settings.
    LeBouf RF; Stefaniak AB; Virji MA
    J Environ Monit; 2012 Mar; 14(3):977-83. PubMed ID: 22322315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-adsorbent preconcentration/focusing module for portable-GC/microsensor-array analysis of complex vapor mixtures.
    Lu CJ; Zellers ET
    Analyst; 2002 Aug; 127(8):1061-8. PubMed ID: 12195947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some insights into analytical bias involved in the application of grab sampling for volatile organic compounds: a case study against used Tedlar bags.
    Ghosh S; Kim KH; Sohn JR
    ScientificWorldJournal; 2011; 11():2160-77. PubMed ID: 22235175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment.
    Offenthaler I; Jakobi G; Kaiser A; Kirchner M; KrÀuchi N; Niedermoser B; Schramm KW; Sedivy I; Staudinger M; Thanner G; Weiss P; Moche W
    Environ Pollut; 2009 Dec; 157(12):3290-7. PubMed ID: 19581029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of diffusive mini-samplers for aldehyde and VOC and its feasibility for measuring the exposure levels of elementary school children.
    Araki A; Tsuboi T; Kawai T; Bamai YA; Takeda T; Yoshioka E; Kishi R
    J Environ Monit; 2012 Feb; 14(2):368-74. PubMed ID: 21986583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.