BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25626674)

  • 1. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S.
    Vizovišek M; Vidmar R; Van Quickelberghe E; Impens F; Andjelković U; Sobotič B; Stoka V; Gevaert K; Turk B; Fonović M
    Proteomics; 2015 Jul; 15(14):2479-90. PubMed ID: 25626674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FPPS: Fast Profiling of Protease Specificity.
    Vizovišek M; Vidmar R; Fonović M
    Methods Mol Biol; 2017; 1574():183-195. PubMed ID: 28315251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S.
    Biniossek ML; Nägler DK; Becker-Pauly C; Schilling O
    J Proteome Res; 2011 Dec; 10(12):5363-73. PubMed ID: 21967108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of cathepsin S detection using a designed FRET peptide based on putative natural substrates.
    Oliveira M; Torquato RJ; Alves MF; Juliano MA; Brömme D; Barros NM; Carmona AK
    Peptides; 2010 Apr; 31(4):562-7. PubMed ID: 20045715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial Peptide LL-37 Is Both a Substrate of Cathepsins S and K and a Selective Inhibitor of Cathepsin L.
    Andrault PM; Samsonov SA; Weber G; Coquet L; Nazmi K; Bolscher JG; Lalmanach AC; Jouenne T; Brömme D; Pisabarro MT; Lalmanach G; Lecaille F
    Biochemistry; 2015 May; 54(17):2785-98. PubMed ID: 25884905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct properties of prohormone thiol protease (PTP) compared to cathepsins B, L, and H: evidence for PTP as a novel cysteine protease.
    Azaryan AV; Hook VY
    Arch Biochem Biophys; 1994 Oct; 314(1):171-7. PubMed ID: 7944391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational predictions of cysteine cathepsin-mediated fibrinogen proteolysis.
    Ferrall-Fairbanks MC; West DM; Douglas SA; Averett RD; Platt MO
    Protein Sci; 2018 Mar; 27(3):714-724. PubMed ID: 29266558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities.
    Choe Y; Leonetti F; Greenbaum DC; Lecaille F; Bogyo M; Brömme D; Ellman JA; Craik CS
    J Biol Chem; 2006 May; 281(18):12824-32. PubMed ID: 16520377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical properties and regulation of cathepsin K activity.
    Lecaille F; Brömme D; Lalmanach G
    Biochimie; 2008 Feb; 90(2):208-26. PubMed ID: 17935853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Dibasic Cleavage Specificities of Neuropeptide-Producing Cathepsin L and Cathepsin V Cysteine Proteases Compared to PC1/3 and PC2 Serine Proteases.
    Yoon MC; Ames J; Mosier C; Jiang Z; Podvin S; O'Donoghue AJ; Hook V
    ACS Chem Neurosci; 2022 Jan; 13(2):245-256. PubMed ID: 34986304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage site specificity of cathepsin K toward cartilage proteoglycans and protease complex formation.
    Hou WS; Li Z; Büttner FH; Bartnik E; Brömme D
    Biol Chem; 2003 Jun; 384(6):891-7. PubMed ID: 12887056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease Substrate Profiling by N-Terminal COFRADIC.
    Staes A; Van Damme P; Timmerman E; Ruttens B; Stes E; Gevaert K; Impens F
    Methods Mol Biol; 2017; 1574():51-76. PubMed ID: 28315243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues.
    Wilder CL; Park KY; Keegan PM; Platt MO
    Arch Biochem Biophys; 2011 Dec; 516(1):52-7. PubMed ID: 21982919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the substrate specificity of mouse cathepsin P.
    Puzer L; Barros NM; Oliveira V; Juliano MA; Lu G; Hassanein M; Juliano L; Mason RW; Carmona AK
    Arch Biochem Biophys; 2005 Mar; 435(1):190-6. PubMed ID: 15680921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L.
    Aich P; Biswas S
    Cell Biochem Biophys; 2018 Jun; 76(1-2):219-229. PubMed ID: 29322360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipeptide-derived nitriles containing additional electrophilic sites: potentially irreversible inhibitors of cysteine proteases.
    Löser R; Gütschow M
    J Enzyme Inhib Med Chem; 2009 Dec; 24(6):1245-52. PubMed ID: 19912058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic Identification of Cysteine Cathepsin Substrates Shed from the Surface of Cancer Cells.
    Sobotič B; Vizovišek M; Vidmar R; Van Damme P; Gocheva V; Joyce JA; Gevaert K; Turk V; Turk B; Fonović M
    Mol Cell Proteomics; 2015 Aug; 14(8):2213-28. PubMed ID: 26081835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protease cleavage site fingerprinting by label-free in-gel degradomics reveals pH-dependent specificity switch of legumain.
    Vidmar R; Vizovišek M; Turk D; Turk B; Fonović M
    EMBO J; 2017 Aug; 36(16):2455-2465. PubMed ID: 28733325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases.
    Schilling K; Körner A; Sehmisch S; Kreusch A; Kleint R; Benedix Y; Schlabrakowski A; Wiederanders B
    Biol Chem; 2009 Feb; 390(2):167-74. PubMed ID: 19040358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.