BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25627025)

  • 1. Isothermal amplified detection of ATP using Au nanocages capped with a DNA molecular gate and its application in cell lysates.
    Wang W; Zhao N; Li X; Wan J; Luo X
    Analyst; 2015 Mar; 140(5):1672-7. PubMed ID: 25627025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioresponsive controlled-release biosensor using Au nanocages capped with an aptamer-based molecular gate and its application in living cells.
    Wang W; Yan T; Cui S; Wan J
    Chem Commun (Camb); 2012 Oct; 48(82):10228-30. PubMed ID: 22968197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques.
    Yao GH; Liang RP; Yu XD; Huang CF; Zhang L; Qiu JD
    Anal Chem; 2015 Jan; 87(2):929-36. PubMed ID: 25494977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate.
    Song W; Zhang Q; Xie X; Zhang S
    Biosens Bioelectron; 2014 Nov; 61():51-6. PubMed ID: 24851721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP.
    Wang W; Li X; Tang K; Song Z; Luo X
    J Mater Chem B; 2020 Jul; 8(27):5945-5951. PubMed ID: 32667018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.
    Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A
    Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultra-sensitive fluorescent "Turn On" biosensor for glutathione and its application in living cells.
    Wang W; Hou X; Li X; Chen C; Luo X
    Anal Chim Acta; 2018 Jan; 998():45-51. PubMed ID: 29153085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate.
    Zhu CL; Lu CH; Song XY; Yang HH; Wang XR
    J Am Chem Soc; 2011 Feb; 133(5):1278-81. PubMed ID: 21214180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.
    Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH
    Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive electrochemiluminescence aptasensor for 8-hydroxy-2'-deoxyguanosine detection based on target-induced multi-DNA release and nicking enzyme amplification strategy.
    Zhao RN; Jia LP; Feng Z; Ma RN; Zhang W; Shang L; Xue QW; Wang HS
    Biosens Bioelectron; 2019 Nov; 144():111669. PubMed ID: 31494507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystal-based electrochemiluminescence sensor for cell detection with Au nanoparticles and isothermal circular double-assisted signal amplification.
    Dai PP; Li JY; Yu T; Xu JJ; Chen HY
    Talanta; 2015 Aug; 141():97-102. PubMed ID: 25966387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional label-free electrochemical biosensor based on an integrated aptamer.
    Du Y; Li B; Wei H; Wang Y; Wang E
    Anal Chem; 2008 Jul; 80(13):5110-7. PubMed ID: 18522435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a sensitive aptasensor based on magnetic microbeads-assisted strand displacement amplification and target recycling.
    Li Y; Ji X; Song W; Guo Y
    Anal Chim Acta; 2013 Apr; 770():147-52. PubMed ID: 23498697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNAzyme-activated and aptamer-based target-triggering circular amplification.
    Song W; Zhu Z; Mao Y; Zhang S
    Biosens Bioelectron; 2014 Mar; 53():288-94. PubMed ID: 24161526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bioresponsive controlled-release bioassay based on aptamer-gated Au nanocages and its application in living cells.
    Wang W; Chen C; Li X; Wang S; Luo X
    Chem Commun (Camb); 2015 Jun; 51(44):9109-12. PubMed ID: 25939588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multianalyte electrochemical biosensor based on aptamer- and nanoparticle-integrated bio-barcode amplification.
    Li X; Xia J; Li W; Zhang S
    Chem Asian J; 2010 Feb; 5(2):294-300. PubMed ID: 20013991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles.
    Wang J; Lu J; Su S; Gao J; Huang Q; Wang L; Huang W; Zuo X
    Biosens Bioelectron; 2015 Mar; 65():171-5. PubMed ID: 25461154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A.
    Hun X; Liu F; Mei Z; Ma L; Wang Z; Luo X
    Biosens Bioelectron; 2013 Jan; 39(1):145-51. PubMed ID: 22938841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemiluminescence DNA biosensor based on dual-amplification of thrombin and thiocyanuric acid-gold nanoparticle network.
    Li X; Li W; Zhang S
    Analyst; 2010 Feb; 135(2):332-6. PubMed ID: 20098767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.