BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25627191)

  • 21. Documentation of optic disc melanocytoma by spectral and time domain optical coherence tomography.
    Shah VA; Vincent RD; Desai K; Gallimore G; Rupani M
    Can J Ophthalmol; 2009 Oct; 44(5):603-4. PubMed ID: 19789601
    [No Abstract]   [Full Text] [Related]  

  • 22. Solitary idiopathic choroiditis: findings on enhanced depth imaging optical coherence tomography in 10 cases.
    Fung AT; Kaliki S; Shields CL; Mashayekhi A; Shields JA
    Ophthalmology; 2013 Apr; 120(4):852-8. PubMed ID: 23246121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multimodal imaging in persistent placoid maculopathy.
    Gendy MG; Fawzi AA; Wendel RT; Pieramici DJ; Miller JA; Jampol LM
    JAMA Ophthalmol; 2014 Jan; 132(1):38-49. PubMed ID: 24310266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optic nerve head melanocytoma: Optical coherence tomography/angiography features.
    Raval V; Reddy R; Kaliki S; Das T; Singh AD
    Indian J Ophthalmol; 2021 Feb; 69(2):332-336. PubMed ID: 33463586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy.
    Fujiwara T; Imamura Y; Giovinazzo VJ; Spaide RF
    Retina; 2010 Sep; 30(8):1206-16. PubMed ID: 20661173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Comparison of Heidelberg retinal tomography and spectral domain optical coherence tomography examinations for detection of glaucoma].
    Piasecka K; Bednarski M; Nawrocka Z; Nawrocki J; Michalewska Z
    Klin Oczna; 2013; 115(2):125-9. PubMed ID: 24059028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation between spectral-domain optical coherence tomography and autofluorescence findings in sclerochoroidal calcification.
    Caminal-Mitjana JM; Padrón-Pérez N; Arias-Barquet L; Rubio-Caso MJ; Català-Mora J
    Can J Ophthalmol; 2013 Aug; 48(4):331-4. PubMed ID: 23931475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wide-field fundus autofluorescence imaging to evaluate retinal function in patients with retinitis pigmentosa.
    Ogura S; Yasukawa T; Kato A; Usui H; Hirano Y; Yoshida M; Ogura Y
    Am J Ophthalmol; 2014 Nov; 158(5):1093-8. PubMed ID: 25062603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reverse fluorescein cap sign of cavernous haemangioma of optic nerve on OCT angiography.
    Rani PK; Peguda HK; Kaliki S; Chhablani J
    BMJ Case Rep; 2016 Dec; 2016():. PubMed ID: 27932437
    [No Abstract]   [Full Text] [Related]  

  • 30. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND WIDEFIELD FUNDUS AUTOFLUORESCENCE IN PUNCTATE INNER CHOROIDOPATHY.
    Klufas MA; OʼHearn T; Sarraf D
    Retin Cases Brief Rep; 2015; 9(4):323-6. PubMed ID: 26421890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The expanded spectrum of focal choroidal excavation.
    Margolis R; Mukkamala SK; Jampol LM; Spaide RF; Ober MD; Sorenson JA; Gentile RC; Miller JA; Sherman J; Freund KB
    Arch Ophthalmol; 2011 Oct; 129(10):1320-5. PubMed ID: 21670327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperreflective dots surrounding the central retinal artery and vein in optic disc melanocytoma revealed by spectral domain optical coherence tomography.
    Okubo A; Unoki K; Yoshikawa H; Ishibashi T; Sameshima M; Sakamoto T
    Jpn J Ophthalmol; 2013 Jan; 57(1):108-12. PubMed ID: 23138682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A longitudinal comparison of spectral-domain optical coherence tomography and fundus autofluorescence in geographic atrophy.
    Simader C; Sayegh RG; Montuoro A; Azhary M; Koth AL; Baratsits M; Sacu S; Prünte C; Kreil DP; Schmidt-Erfurth U
    Am J Ophthalmol; 2014 Sep; 158(3):557-66.e1. PubMed ID: 24879944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microperimetric correlations of autofluorescence and optical coherence tomography imaging in dry age-related macular degeneration.
    Querques L; Querques G; Forte R; Souied EH
    Am J Ophthalmol; 2012 Jun; 153(6):1110-5. PubMed ID: 22321805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral domain optical coherence tomography analysis of macular changes in tilted disk syndrome.
    Cohen SY; Dubois L; Nghiem-Buffet S; Fajnkuchen F; Delahaye-Mazza C; Quentel G; Gaudric A; Tadayoni R
    Retina; 2013; 33(7):1338-45. PubMed ID: 23538581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SD-OCT and autofluorescence characteristics of autoimmune retinopathy.
    Pepple KL; Cusick M; Jaffe GJ; Mruthyunjaya P
    Br J Ophthalmol; 2013 Feb; 97(2):139-44. PubMed ID: 23221966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined fluorescein angiography and spectral-domain optical coherence tomography imaging of classic choroidal neovascularization secondary to age-related macular degeneration before and after intravitreal ranibizumab injections.
    Coscas F; Querques G; Forte R; Terrada C; Coscas G; Souied EH
    Retina; 2012 Jun; 32(6):1069-76. PubMed ID: 22466476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multimodal Imaging of Optic Nerve Head Capillary Hemangioma.
    Cennamo G; Comune C; Cennamo G; de Crecchio G
    Retina; 2018 Jul; 38(7):e50-e52. PubMed ID: 29864074
    [No Abstract]   [Full Text] [Related]  

  • 39. Characteristic spectral-domain optical coherence tomography findings of multifocal choroiditis.
    Vance SK; Khan S; Klancnik JM; Freund KB
    Retina; 2011 Apr; 31(4):717-23. PubMed ID: 21386760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fourier-domain optical coherence tomography evaluation of retinal and optic nerve head neovascularisation in proliferative diabetic retinopathy.
    Muqit MM; Stanga PE
    Br J Ophthalmol; 2014 Jan; 98(1):65-72. PubMed ID: 24158844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.