BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25627710)

  • 1. Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily.
    Franke FA; Schumann I; Hering L; Mayer G
    Evol Dev; 2015; 17(1):3-20. PubMed ID: 25627710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis.
    Matus DQ; Pang K; Daly M; Martindale MQ
    Evol Dev; 2007; 9(1):25-38. PubMed ID: 17227364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancestral and novel roles of Pax family genes in mollusks.
    Scherholz M; Redl E; Wollesen T; de Oliveira AL; Todt C; Wanninger A
    BMC Evol Biol; 2017 Mar; 17(1):81. PubMed ID: 28302062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pax gene family: Highlights from cephalopods.
    Navet S; Buresi A; Baratte S; Andouche A; Bonnaud-Ponticelli L; Bassaglia Y
    PLoS One; 2017; 12(3):e0172719. PubMed ID: 28253300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression.
    Beckmann H; Hering L; Henze MJ; Kelber A; Stevenson PA; Mayer G
    J Exp Biol; 2015 Mar; 218(Pt 6):915-22. PubMed ID: 25617459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli.
    Treffkorn S; Mayer G
    Gene Expr Patterns; 2013 Dec; 13(8):384-94. PubMed ID: 23872340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.
    Hering L; Mayer G
    Genome Biol Evol; 2014 Sep; 6(9):2380-91. PubMed ID: 25193307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of in vivo functional compensation between Pax family groups II and III in rodents.
    Hayashi S; Rocancourt D; Buckingham M; Relaix F
    Mol Biol Evol; 2011 Oct; 28(10):2787-98. PubMed ID: 21512107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Pax and Six gene families in sponges: Single PaxB and Six1/2 orthologs in Chalinula loosanoffi.
    Hill A; Boll W; Ries C; Warner L; Osswalt M; Hill M; Noll M
    Dev Biol; 2010 Jul; 343(1-2):106-23. PubMed ID: 20346936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene.
    Feiner N; Meyer A; Kuraku S
    Genome Biol Evol; 2014 Jun; 6(7):1635-51. PubMed ID: 24951566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression study of the hunchback ortholog in embryos of the onychophoran Euperipatoides rowelli.
    Franke FA; Mayer G
    Dev Genes Evol; 2015 Jul; 225(4):207-19. PubMed ID: 26093940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: Insights from Onychophora (velvet worms) and Tardigrada (water bears).
    Mayer G; Hering L; Stosch JM; Stevenson PA; Dircksen H
    J Comp Neurol; 2015 Sep; 523(13):1865-85. PubMed ID: 25722044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paxbeta: a novel family of lophotrochozoan Pax genes.
    Schmerer M; Savage RM; Shankland M
    Evol Dev; 2009; 11(6):689-96. PubMed ID: 19878290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the gene families forming the Pax/Six regulatory network: isolation of genes from primitive animals and molecular phylogenetic analyses.
    Hoshiyama D; Iwabe N; Miyata T
    FEBS Lett; 2007 Apr; 581(8):1639-43. PubMed ID: 17383640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Trichoplax PaxB gene: a putative Proto-PaxA/B/C gene predating the origin of nerve and sensory cells.
    Hadrys T; DeSalle R; Sagasser S; Fischer N; Schierwater B
    Mol Biol Evol; 2005 Jul; 22(7):1569-78. PubMed ID: 15858210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis.
    Janssen R; Andersson E; Betnér E; Bijl S; Fowler W; Höök L; Leyhr J; Mannelqvist A; Panara V; Smith K; Tiemann S
    BMC Evol Biol; 2018 Jun; 18(1):88. PubMed ID: 29884143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda.
    Rota-Stabelli O; Kayal E; Gleeson D; Daub J; Boore JL; Telford MJ; Pisani D; Blaxter M; Lavrov DV
    Genome Biol Evol; 2010 Jul; 2():425-40. PubMed ID: 20624745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of NK cluster genes in the onychophoran
    Treffkorn S; Kahnke L; Hering L; Mayer G
    Evodevo; 2018; 9():17. PubMed ID: 30026904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete mitochondrial genome of the onychophoran Epiperipatus biolleyi reveals a unique transfer RNA set and provides further support for the ecdysozoa hypothesis.
    Podsiadlowski L; Braband A; Mayer G
    Mol Biol Evol; 2008 Jan; 25(1):42-51. PubMed ID: 17934206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae).
    Treffkorn S; Mayer G
    BMC Dev Biol; 2019 Apr; 19(1):7. PubMed ID: 30987579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.