These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25627871)

  • 1. TLEM 2.0 - a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity.
    Carbone V; Fluit R; Pellikaan P; van der Krogt MM; Janssen D; Damsgaard M; Vigneron L; Feilkas T; Koopman HF; Verdonschot N
    J Biomech; 2015 Mar; 48(5):734-41. PubMed ID: 25627871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique.
    Modenese L; Ceseracciu E; Reggiani M; Lloyd DG
    J Biomech; 2016 Jan; 49(2):141-8. PubMed ID: 26776930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refining muscle geometry and wrapping in the TLEM 2 model for improved hip contact force prediction.
    De Pieri E; Lund ME; Gopalakrishnan A; Rasmussen KP; Lunn DE; Ferguson SJ
    PLoS One; 2018; 13(9):e0204109. PubMed ID: 30222777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
    Nolte D; Tsang CK; Zhang KY; Ding Z; Kedgley AE; Bull AMJ
    J Biomech; 2016 Oct; 49(14):3576-3581. PubMed ID: 27653375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry.
    Meyer AJ; Patten C; Fregly BJ
    PLoS One; 2017; 12(7):e0179698. PubMed ID: 28700708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity.
    Pellikaan P; van der Krogt MM; Carbone V; Fluit R; Vigneron LM; Van Deun J; Verdonschot N; Koopman HF
    J Biomech; 2014 Mar; 47(5):1144-50. PubMed ID: 24418197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships of 35 lower limb muscles to height and body mass quantified using MRI.
    Handsfield GG; Meyer CH; Hart JM; Abel MF; Blemker SS
    J Biomech; 2014 Feb; 47(3):631-8. PubMed ID: 24368144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of using MRIs to create subject-specific parallel-mechanism joint models.
    Brito da Luz S; Modenese L; Sancisi N; Mills PM; Kennedy B; Beck BR; Lloyd DG
    J Biomech; 2017 Feb; 53():45-55. PubMed ID: 28153474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity.
    Klein Horsman MD; Koopman HF; van der Helm FC; Prosé LP; Veeger HE
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):239-47. PubMed ID: 17134801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Generation of Three-Dimensional Complex Muscle Geometries for Use in Personalised Musculoskeletal Models.
    Modenese L; Kohout J
    Ann Biomed Eng; 2020 Jun; 48(6):1793-1804. PubMed ID: 32185569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of attachment regions of hip muscles in CT image using muscle attachment probabilistic atlas constructed from measurements in eight cadavers.
    Fukuda N; Otake Y; Takao M; Yokota F; Ogawa T; Uemura K; Nakaya R; Tamura K; Grupp RB; Farvardin A; Armand M; Sugano N; Sato Y
    Int J Comput Assist Radiol Surg; 2017 May; 12(5):733-742. PubMed ID: 28188484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of the muscle/tendon excursions and moment arms in the thumb using the commercial software anybody.
    Wu JZ; An KN; Cutlip RG; Andrew ME; Dong RG
    J Biomech; 2009 Feb; 42(3):383-8. PubMed ID: 19124127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle parameters estimation based on biplanar radiography.
    Dubois G; Rouch P; Bonneau D; Gennisson JL; Skalli W
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1592-8. PubMed ID: 27082150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mass-length scaling law for modeling muscle strength in the lower limb.
    Correa TA; Pandy MG
    J Biomech; 2011 Nov; 44(16):2782-9. PubMed ID: 21937046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.
    Valente G; Crimi G; Vanella N; Schileo E; Taddei F
    Comput Methods Programs Biomed; 2017 Dec; 152():85-92. PubMed ID: 29054263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of subject-specific models to errors in musculo-skeletal geometry.
    Carbone V; van der Krogt MM; Koopman HF; Verdonschot N
    J Biomech; 2012 Sep; 45(14):2476-80. PubMed ID: 22867762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.
    Ruggiero M; Cless D; Infantolino B
    PLoS One; 2016; 11(12):e0162963. PubMed ID: 28033339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait.
    Dumas R; Moissenet F; Gasparutto X; Cheze L
    Proc Inst Mech Eng H; 2012 Feb; 226(2):146-60. PubMed ID: 22468466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.