These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25627871)

  • 21. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait.
    Dumas R; Moissenet F; Gasparutto X; Cheze L
    Proc Inst Mech Eng H; 2012 Feb; 226(2):146-60. PubMed ID: 22468466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling avian kinematics using software developed for the human musculoskeletal system.
    Buford WL; Hollister AM; Andersen CR
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4301-4. PubMed ID: 18002953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Musculotendon lengths and moment arms for a three-dimensional upper-extremity model.
    Rankin JW; Neptune RR
    J Biomech; 2012 Jun; 45(9):1739-44. PubMed ID: 22520587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower limb estimation from sparse landmarks using an articulated shape model.
    Zhang J; Fernandez J; Hislop-Jambrich J; Besier TF
    J Biomech; 2016 Dec; 49(16):3875-3881. PubMed ID: 28573974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Musculoskeletal modeling of human lower limb during normal walking, one-legged forward hopping and side jumping: Comparison of measured EMG and predicted muscle activity patterns.
    Wibawa AD; Verdonschot N; Halbertsma JPK; Burgerhof JGM; Diercks RL; Verkerke GJ
    J Biomech; 2016 Nov; 49(15):3660-3666. PubMed ID: 27756572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures.
    Delp SL; Loan JP; Hoy MG; Zajac FE; Topp EL; Rosen JM
    IEEE Trans Biomed Eng; 1990 Aug; 37(8):757-67. PubMed ID: 2210784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.
    Carbone V; van der Krogt MM; Koopman HFJM; Verdonschot N
    J Biomech; 2016 Jun; 49(9):1953-1960. PubMed ID: 27131851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities.
    Valente G; Pitto L; Stagni R; Taddei F
    J Biomech; 2015 Dec; 48(16):4198-205. PubMed ID: 26506255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: A systematic review.
    Moissenet F; Modenese L; Dumas R
    J Biomech; 2017 Oct; 63():8-20. PubMed ID: 28919103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle-tendon unit scaling methods of Hill-type musculoskeletal models: An overview.
    Heinen F; Lund ME; Rasmussen J; de Zee M
    Proc Inst Mech Eng H; 2016 Oct; 230(10):976-84. PubMed ID: 27459500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA; Vanheule V; Fluit R; Koopman BH; Rasmussen J; Verdonschot N; Andersen MS
    J Biomech Eng; 2015 Feb; 137(2):020904. PubMed ID: 25429519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling.
    Skipper Andersen M; de Zee M; Damsgaard M; Nolte D; Rasmussen J
    J Biomech Eng; 2017 Sep; 139(9):. PubMed ID: 28639682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subject-specific musculoskeletal model of the lower limb in a lying and standing position.
    Hausselle J; Assi A; El Helou A; Jolivet E; Pillet H; Dion E; Bonneau D; Skalli W
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):480-7. PubMed ID: 22731619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of musculoskeletal loadings in lower limbs during stilts walking in occupational activity.
    Wu JZ; Chiou SS; Pan CS
    Ann Biomed Eng; 2009 Jun; 37(6):1177-89. PubMed ID: 19296222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of scaling physiological cross-sectional area on musculoskeletal model predictions.
    Bolsterlee B; Vardy AN; van der Helm FC; Veeger HE
    J Biomech; 2015 Jul; 48(10):1760-8. PubMed ID: 26050956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between line and surface mesh models to represent the rotator cuff muscle geometry in musculoskeletal models.
    Hoffmann M; Haering D; Begon M
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1175-1181. PubMed ID: 28628751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model.
    Menegaldo LL; de Toledo Fleury A; Weber HI
    J Biomech; 2004 Sep; 37(9):1447-53. PubMed ID: 15275854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Digital model of human lower extremity musculature based on CT & MRI].
    Shang P; Ye M; Wang C; Wang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):756-60. PubMed ID: 15553852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.