These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25627871)

  • 41. Twente spine model: A complete and coherent dataset for musculo-skeletal modeling of the thoracic and cervical regions of the human spine.
    Bayoglu R; Geeraedts L; Groenen KHJ; Verdonschot N; Koopman B; Homminga J
    J Biomech; 2017 Jun; 58():52-63. PubMed ID: 28465030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine.
    Eskandari AH; Arjmand N; Shirazi-Adl A; Farahmand F
    J Biomech; 2017 May; 57():18-26. PubMed ID: 28365064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A computational approach to calculate personalized pennation angle based on MRI: effect on motion analysis.
    Chincisan A; Tecante K; Becker M; Magnenat-Thalmann N; Hurschler C; Choi HF
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):683-93. PubMed ID: 26137896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Incorporation of CT-based measurements of trunk anatomy into subject-specific musculoskeletal models of the spine influences vertebral loading predictions.
    Bruno AG; Mokhtarzadeh H; Allaire BT; Velie KR; De Paolis Kaluza MC; Anderson DE; Bouxsein ML
    J Orthop Res; 2017 Oct; 35(10):2164-2173. PubMed ID: 28092118
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparison of gastrocnemius muscle-tendon unit length during gait using anatomic, cadaveric and MRI models.
    Yuen TJ; Orendurff MS
    Gait Posture; 2006 Jan; 23(1):112-7. PubMed ID: 16311203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.
    Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG
    J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of passive actions to the lower limb joint moments and powers during gait: A comparison of models.
    Gasparutto X; Jacquelin E; Dumas R
    Proc Inst Mech Eng H; 2018 Aug; 232(8):768-778. PubMed ID: 30004297
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.
    Jamwal PK; Hussain S; Tsoi YH; Ghayesh MH; Xie SQ
    Clin Biomech (Bristol, Avon); 2017 May; 44():75-82. PubMed ID: 28351736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic coordinate data for describing muscle-tendon paths: a mathematical approach.
    Carman AB; Milburn PD
    J Biomech; 2005 Apr; 38(4):943-51. PubMed ID: 15713315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subject-specific geometrical detail rather than cost function formulation affects hip loading calculation.
    Wesseling M; De Groote F; Bosmans L; Bartels W; Meyer C; Desloovere K; Jonkers I
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1475-88. PubMed ID: 26930478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study.
    Scheys L; Loeckx D; Spaepen A; Suetens P; Jonkers I
    J Biomech; 2009 Mar; 42(5):565-72. PubMed ID: 19232618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Twente spine model: A complete and coherent dataset for musculo-skeletal modeling of the lumbar region of the human spine.
    Bayoglu R; Geeraedts L; Groenen KHJ; Verdonschot N; Koopman B; Homminga J
    J Biomech; 2017 Feb; 53():111-119. PubMed ID: 28131485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A transformation method to estimate muscle attachments based on three bony landmarks.
    Matias R; Andrade C; Veloso AP
    J Biomech; 2009 Feb; 42(3):331-5. PubMed ID: 19136112
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Best methods and data to reconstruct paediatric lower limb bones for musculoskeletal modelling.
    Davico G; Pizzolato C; Killen BA; Barzan M; Suwarganda EK; Lloyd DG; Carty CP
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1225-1238. PubMed ID: 31691037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensitivity of an equine distal limb model to perturbations in tendon paths, origins and insertions.
    Lawson SE; Chateau H; Pourcelot P; Denoix JM; Crevier-Denoix N
    J Biomech; 2007; 40(11):2510-6. PubMed ID: 17257605
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Musculoskeletal model of the upper limb based on the visible human male dataset.
    Garner BA; Pandy MG
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):93-126. PubMed ID: 11264863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.