BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25628144)

  • 1. Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1033-44. PubMed ID: 25628144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional tolerance to mechanical deformation developed from organotypic hippocampal slice cultures.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Jun; 14(3):561-75. PubMed ID: 25236799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of thalamocortical oscillations following traumatic brain injury in rats.
    Kao C; Forbes JA; Jermakowicz WJ; Sun DA; Davis B; Zhu J; Lagrange AH; Konrad PE
    J Neurosurg; 2012 Aug; 117(2):316-23. PubMed ID: 22631688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.
    LaPlaca MC; Cullen DK; McLoughlin JJ; Cargill RS
    J Biomech; 2005 May; 38(5):1093-105. PubMed ID: 15797591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical trauma induces immediate changes in neuronal network activity.
    Prado GR; Ross JD; DeWeerth SP; LaPlaca MC
    J Neural Eng; 2005 Dec; 2(4):148-58. PubMed ID: 16317239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels.
    Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Region-specific tolerance criteria for the living brain.
    Elkin BS; Morrison B
    Stapp Car Crash J; 2007 Oct; 51():127-38. PubMed ID: 18278594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate.
    Cater HL; Sundstrom LE; Morrison B
    J Biomech; 2006; 39(15):2810-8. PubMed ID: 16289515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of functional alterations after in vitro traumatic brain injury.
    Yu Z; Elkin BS; Morrison B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1135-8. PubMed ID: 19963487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures.
    Morrison B; Cater HL; Benham CD; Sundstrom LE
    J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling neural injury in organotypic cultures by application of inertia-driven shear strain.
    Bottlang M; Sommers MB; Lusardi TA; Miesch JJ; Simon RP; Xiong ZG
    J Neurotrauma; 2007 Jun; 24(6):1068-77. PubMed ID: 17600521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in Hippocampal Network Activity after In Vitro Traumatic Brain Injury.
    Kang WH; Cao W; Graudejus O; Patel TP; Wagner S; Meaney DF; Morrison B
    J Neurotrauma; 2015 Jul; 32(13):1011-9. PubMed ID: 25517970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field.
    Cullen DK; LaPlaca MC
    J Neurotrauma; 2006 Sep; 23(9):1304-19. PubMed ID: 16958583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable microelectrode arrays--a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics.
    Yu Z; Tsay C; Lacour SP; Wagner S; Morrison B
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6732-5. PubMed ID: 17959498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture.
    Magou GC; Pfister BJ; Berlin JR
    Brain Res; 2015 Oct; 1624():525-535. PubMed ID: 26296661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-strain-rate brain injury model using submerged acute rat brain tissue slices.
    Sarntinoranont M; Lee SJ; Hong Y; King MA; Subhash G; Kwon J; Moore DF
    J Neurotrauma; 2012 Jan; 29(2):418-29. PubMed ID: 21970544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.
    Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can sulci protect the brain from traumatic injury?
    Ho J; Kleiven S
    J Biomech; 2009 Sep; 42(13):2074-80. PubMed ID: 19679308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent regional mechanical properties of the rat hippocampus and cortex.
    Elkin BS; Ilankovan A; Morrison B
    J Biomech Eng; 2010 Jan; 132(1):011010. PubMed ID: 20524748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early, transient increase in complexin I and complexin II in the cerebral cortex following traumatic brain injury is attenuated by N-acetylcysteine.
    Yi JH; Hoover R; McIntosh TK; Hazell AS
    J Neurotrauma; 2006 Jan; 23(1):86-96. PubMed ID: 16430375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.