These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 25628563)

  • 1. Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition.
    Füllgrabe C; Moore BC; Stone MA
    Front Aging Neurosci; 2014; 6():347. PubMed ID: 25628563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal processing in low-frequency channels: effects of age and hearing loss in middle-aged listeners.
    Leigh-Paffenroth ED; Elangovan S
    J Am Acad Audiol; 2011; 22(7):393-404. PubMed ID: 21993047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrotemporal modulation sensitivity as a predictor of speech intelligibility for hearing-impaired listeners.
    Bernstein JG; Mehraei G; Shamma S; Gallun FJ; Theodoroff SM; Leek MR
    J Am Acad Audiol; 2013 Apr; 24(4):293-306. PubMed ID: 23636210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners.
    Schoof T; Rosen S
    Front Aging Neurosci; 2014; 6():307. PubMed ID: 25429266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech-in-speech listening on the LiSN-S test by older adults with good audiograms depends on cognition and hearing acuity at high frequencies.
    Besser J; Festen JM; Goverts ST; Kramer SE; Pichora-Fuller MK
    Ear Hear; 2015 Jan; 36(1):24-41. PubMed ID: 25207850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Age-Related Declines in Subcortical Auditory Processing in Speech Perception in Noise.
    Schoof T; Rosen S
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):441-60. PubMed ID: 27216166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of aging on speech perception in noise: comparison between normal-hearing and cochlear-implant listeners.
    Jin SH; Liu C; Sladen DP
    J Am Acad Audiol; 2014; 25(7):656-65. PubMed ID: 25365368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suprathreshold auditory processing and speech perception in noise: hearing-impaired and normal-hearing listeners.
    Summers V; Makashay MJ; Theodoroff SM; Leek MR
    J Am Acad Audiol; 2013 Apr; 24(4):274-92. PubMed ID: 23636209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss.
    Fogerty D; Ahlstrom JB; Bologna WJ; Dubno JR
    J Acoust Soc Am; 2015 Jun; 137(6):3487-501. PubMed ID: 26093436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Masked speech perception across the adult lifespan: Impact of age and hearing impairment.
    Goossens T; Vercammen C; Wouters J; van Wieringen A
    Hear Res; 2017 Feb; 344():109-124. PubMed ID: 27845259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory and Cognitive Factors Associated with Speech-in-Noise Complaints following Mild Traumatic Brain Injury.
    Hoover EC; Souza PE; Gallun FJ
    J Am Acad Audiol; 2017 Apr; 28(4):325-339. PubMed ID: 28418327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory models of suprathreshold distortion and speech intelligibility in persons with impaired hearing.
    Bernstein JG; Summers V; Grassi E; Grant KW
    J Am Acad Audiol; 2013 Apr; 24(4):307-28. PubMed ID: 23636211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Age, Cognition, and Neural Encoding on the Perception of Temporal Speech Cues.
    Roque L; Karawani H; Gordon-Salant S; Anderson S
    Front Neurosci; 2019; 13():749. PubMed ID: 31379494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of speech material on the benefit of temporal fine structure information in speech for young normal-hearing and older hearing-impaired participants.
    Lunner T; Hietkamp RK; Andersen MR; Hopkins K; Moore BC
    Ear Hear; 2012; 33(3):377-88. PubMed ID: 22246137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Binaural Temporal Fine Structure and Envelope Cues in Cocktail-Party Listening.
    Swaminathan J; Mason CR; Streeter TM; Best V; Roverud E; Kidd G
    J Neurosci; 2016 Aug; 36(31):8250-7. PubMed ID: 27488643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Release From Masking in Children: Effects of Simulated Unilateral Hearing Loss.
    Corbin NE; Buss E; Leibold LJ
    Ear Hear; 2017; 38(2):223-235. PubMed ID: 27787392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding excessive SNR loss in hearing-impaired listeners.
    Grant KW; Walden TC
    J Am Acad Audiol; 2013 Apr; 24(4):258-73; quiz 337-8. PubMed ID: 23636208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of age and hearing loss on the relationship between discrimination of stochastic frequency modulation and speech perception.
    Sheft S; Shafiro V; Lorenzi C; McMullen R; Farrell C
    Ear Hear; 2012; 33(6):709-20. PubMed ID: 22790319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing.
    Strelcyk O; Dau T
    J Acoust Soc Am; 2009 May; 125(5):3328-45. PubMed ID: 19425674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.